Implementation of Acoustic Analogies in OpenFOAM for Computation of Sound Fields


In this work the turbulence based acoustic sources and the corresponding wave propagation of fluctuating flow values in incompressible fluid flows are considered. Lighthill’s and Curle’s acoustic analogies are implemented in the open source computational fluid dynamics framework OpenFOAM. The main objective of this work is to visualize and localize the dominated sound sources and the resulting values of fluctuating pressure values within the computation domain representing the acoustical near field. This is all done on one mesh and during the iterative computation of the transient fluid flow. Finally the flow field and acoustical results of different simulation cases are presented and the properties of the shown method are discussed.

Share and Cite:

Schmalz, J. and Kowalczyk, W. (2015) Implementation of Acoustic Analogies in OpenFOAM for Computation of Sound Fields. Open Journal of Acoustics, 5, 29-44. doi: 10.4236/oja.2015.52004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Weller, H.G., Tabor, G., Jasak, H. and Fureby, C. (1998) A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques. Computers in Physics, 12, 620-631.
[2] Lysenko, D.A., Ertesvag, I.S. and Rian, K.E. (2012) Modeling of Turbulent Separated Flows Using OpenFOAM. Computers & Fluids, 80, 408-422.
[3] Nilsson, J. (2010) Implementation of Acoustical Analogies in OpenFOAM and CALFEM. Lund University. Master-Thesis.
[4] Stein, A. and Pelz, P.F. (2012) Moglichkeiten und Grenzen numerischer Stromungsakustik mit OpenFOAM, DAGA 2012.
[5] Wang, Q., Pelz, P.F. and Matyschok, B. (2010) Numerische Simulation von turbulenzbedingtem Schall mit OpenFOAM, TU Darmstadt.
[6] Kraposhin, M.V. and Strizhak, S.V. (2013) How to Implement Simple Acoustic Analogy in OpenFOAM. 8th International OpenFOAM Workshop 2013, Jeju, Korea.
[7] Lighthill, M.J. (1952) On Sound Generated Aerodynamically I. General Theory. Proceedings of the Royal Society A, 211, 564-587.
[8] Koltzsch, P. (2008) Flow Acoustics. In: Mechel, F.P., Ed., Formulas of Acoustics, 2nd Edition, Springer-Verlag Berlin Heidelberg, 945-1016.
[9] Curle, N. (1955) The Influence of Solid Boundaries upon Aerodynamic Sound. Proceedings of the Royal Society A, 231, 505-514.
[10] Ehrenfried, K. (2004) Stromungsakustik: Skript Zur Vorlesung, Mensch & Buch Verlag, Berliner Hochschulskripte.
[11] Ffowcs Williams, J.E. and Hawkings, D.L. (1969) Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society A, 264, 321-342.
[12] Oshima, T. and Imano, M. (2008) A Full Finite-Volume Time-Domain Approach towards General-Purpose Code Development for Sound Propagation Prediction with Unstructured Mesh. Proceedings of Inter-Noise 2008, Shanghai, 26-29 October 2008, 15 p.
[13] Poinsot, T.J. and Lelef, S. (1992) Boundary Conditions for Direct Simulations of Compressible Viscous Flows. Journal of Computational Physics, 101, 104-129.
[14] Colonius, T., Lele, S.K. and Moin, P. (1993) Boundary Conditions for Direct Computation of Aerodynamic Sound Generation, AIAA Journal, 31, 1574-1582.
[15] Andreini, Bianchini, Facchin, Giusti, Bellini, Chiti, Grazzini (2011) Large Eddy Simulation for Train Aerodynamic Noise Predictions. Proceedings of the WCRR 2011, Lille, 22-26 May 2011.
[16] Jangi, M., Tilley, N. and Merci, B. (2009) Numerical Simulations of Some Possible Fire Scenarios in a Closed Car Park with RANS and LES. Proceedings of the IAFSS Advanced Research Workshop, Santander, 15-17 October 2009, 233-242.
[17] Boersma, B.J. (2004) Numerical Simulation of the Noise Generated by a Low Mach Number, Low Reynolds Number Jet. Fluid Dynamics Research, 35, 425-447.
[18] Goldstein, M.E. (1976) Aeroacoustics. McGraw-Hill International Book Co., New York.
[19] Tam, C.K.W. and Webb, J.C. (1993) Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics. Journal of Computational Physics, 107, 262-281.
[20] Schwarze, R. (2013) CFD-Modellierung-Grundlagen Und Anwendungen Bei Stromungsprozessen. Springer Vieweg, Berlin.
[21] Tóth, P., Fritzsch, A. and Lohász, M. (2008) Application of Computational Fluid Dynamics Softwares for 2D Acoustical Wave Propagation. Gépészet, 29-30.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.