Sums of Involving the Harmonic Numbers and the Binomial Coefficients ()
Share and Cite:
Wuyungaowa, &. and Wang, S. (2015) Sums of Involving the Harmonic Numbers and the Binomial Coefficients.
American Journal of Computational Mathematics,
5, 96-105. doi:
10.4236/ajcm.2015.52008.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Zave, D.A. (1976) A Series Expansion Involving the Harmonic Numbers. Information Processing Letters, 5, 75-77.
http://dx.doi.org/10.1016/0020-0190(76)90068-5
|
[2]
|
Spiess, J. (1990) Some Identities Involving Harmonic Numbers. Mathematics Computation, 55, 839-863.
http://dx.doi.org/10.1090/S0025-5718-1990-1023769-6
|
[3]
|
Brietzke, E.H.M. (2008) An Identity of Andrews and a New Method for the Riordan Array Proof of Combinatorial Identities. Discrete Mathematics, 308, 4246-4262.
http://dx.doi.org/10.1016/j.disc.2007.08.050
|
[4]
|
Wang, W. and Wang, T (2008) Generalized Riordan Arrays. Discrete Mathematics, 308, 6466-6500.
http://dx.doi.org/10.1016/j.disc.2007.12.037
|
[5]
|
Flajolet, P., Fusy, E., Gourdon, X., Panario, D. and Pouyanne, N. (2006) A Hybrid of Darboux’s Method and Singularity Analysis in Combinatorial Asymptotics. The Electronic Journal of Combinatorics, 13.
|
[6]
|
Sofo, A. (2012) Euler Related Sums. Mathematical Sciences, 6, 10.
|
[7]
|
Sury, B. (1993) Sum of the Reciprocals of the Binomial Coefficients. European Journal of Combinatorics, 14, 351- 353.
http://dx.doi.org/10.1006/eujc.1993.1038
|
[8]
|
Jonathan, M. (2009) Borwein and O-Yeat Chang. Duallity in Tails of Multiple-Zeta Values, 54, 2220-2234.
|
[9]
|
David, B. and Borwein, J.M. (1995) On an Intrguing Integral and Some Series Relate to . Proceedings of the American Mathematical Society, 123, 1191-1198.
|
[10]
|
Flajolet, P. and Sedgewick, R. (1995) Mellin Transforms Asymptotics: Finite Differences and Rice’s Integrals. Theoretical Computer Science, 144, 101-124.
http://dx.doi.org/10.1016/0304-3975(94)00281-M
|