Share This Article:

Reconstruction of Three Dimensional Convex Bodies from the Curvatures of Their Shadows

Abstract Full-Text HTML XML Download Download as PDF (Size:327KB) PP. 86-95
DOI: 10.4236/ajcm.2015.52007    2,129 Downloads   2,513 Views  
Author(s)    Leave a comment

ABSTRACT

In this article, we study necessary and sufficient conditions for a function, defined on the space of flags to be the projection curvature radius function for a convex body. This type of inverse problems has been studied by Christoffel, Minkwoski for the case of mean and Gauss curvatures. We suggest an algorithm of reconstruction of a convex body from its projection curvature radius function by finding a representation for the support function of the body. We lead the problem to a system of differential equations of second order on the sphere and solve it applying a consistency method suggested by the author of the article.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Aramyan, R. (2015) Reconstruction of Three Dimensional Convex Bodies from the Curvatures of Their Shadows. American Journal of Computational Mathematics, 5, 86-95. doi: 10.4236/ajcm.2015.52007.

References

[1] Minkowski, H. (1911) Theorie der konvexen Korper, insbesondere Begrundung ihresb Oberflachenbergriffs. Ges. Abh., 2, Leipzig, Teubner, 131-229.
[2] Blaschke, W. (1923) Vorlesungen uber Differentialgeometrie. II. Affine Differentialgeometrie, Springer-Verlag, Berlin.
[3] Pogorelov, A.V. (1969) Exterior Geometry of Convex Surfaces [in Russian]. Nauka, Moscow.
[4] Alexandrov, A.D. (1956) Uniqueness Theorems for Surfaces in the Large [in Russian]. Vesti Leningrad State University, 19, 25-40.
[5] Bakelman, I.Ya., Verner, A.L. and Kantor, B.E. (1973) Differential Geometry in the Large [in Russian]. Nauka, Moskow.
[6] Firey, W.J. (1970) Intermediate Christoffel-Minkowski Problems for Figures of Revolution. Israel Journal of Mathematics, 8, 384-390.
http://dx.doi.org/10.1007/BF02798684
[7] Berg, C. (1969) Corps convexes et potentiels spheriques. Matematisk-fysiske Meddelelser Udgivet af. Det Kongelige Danske Videnskabernes Selska, 37, 64.
[8] Wiel, W. and Schneider, R. (1983) Zonoids and Related Topics. In: Gruber, P. and Wills, J., Eds., Convexity and Its Applications, Birkhauser, Basel, 296-317.
[9] Gardner R.J. and Milanfar, P. (2003) Reconstruction of Convex Bodies from Brightness Functions. Discrete & Computational Geometry, 29, 279-303.
http://dx.doi.org/10.1007/s00454-002-0759-2
[10] Ryabogin, D. and Zvavich, A. (2004) Reconstruction of Convex Bodies of Revolution from the Areas of Their Shadows. Archiv der Mathematik, 5, 450-460.
http://dx.doi.org/10.1007/s00454-002-0759-2
[11] Leichtweiz, K. (1980) Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften, Berlin.
http://dx.doi.org/10.1007/978-3-642-95335-4
[12] Ambartzumian, R.V. (1990) Factorization Calculus and Geometrical Probability. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9781139086561
[13] Aramyan, R.H. (2001) An Approach to Generalized Funk Equations I [in Russian]. Izvestiya Akademii Nauk Armenii. Matematika [English Translation: Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)], 36, 47-58.
[14] Aramyan, R.H. (2010) Generalized Radon Transform on the Sphere. Analysis International Mathematical Journal of Analysis and Its Applications, 30, 271-284.
[15] Aramyan, R.H. (2010) Solution of an Integral Equation by Consistency Method. Lithuanian Mathematical Journal, 50, 133-139.
[16] Blaschke, W. (1956) Kreis und Kugel, (Veit, Leipzig). 2nd Edition, De Gruyter, Berlin.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.