[1]
|
Energi, S. (2012) The Electricity Year and Operations.
http://www.svenskenergi.se/Global/Statistik/El%C3%A5ret/ Sv%20Energi_el%C3%A5ret2012_ENG.pdf
|
[2]
|
Violeau, D. (2012) Fluid Mechanics and the SPH Method: Theory and Applications. Oxford University Press, Oxford. http://dx.doi.org/10.1093/acprof:oso/9780199655526.001.0001
|
[3]
|
Scardovelli, R. and Zaleski, S. (1999) Direct Numerical Simulation of Free-Surface and Interfacial Flow. Annual Review of Fluid Mechanics, 31, 576-603.
http://dx.doi.org/10.1146/annurev.fluid.31.1.567
|
[4]
|
Gomez-Gesteria, M., Rogers, B.D., Dalrymple, R.A. and Crespo, A.J.C. (2010) State-of-the-art of Classical SPH for Free-Surface Flows. Journal of Hydraulic Research, 48, 6-27.
http://dx.doi.org/10.1080/00221686.2010.9641242
|
[5]
|
Monaghan, J.J. (2012) Smoothed Particle Hydrodynamics and Its Diverse Applications. Annual Review of Fluid Mechanics, 44, 323-346.
http://dx.doi.org/10.1146/annurev-fluid-120710-101220
|
[6]
|
Lucy, L.B. (1977) A Numerical Approach to the Testing of the Fission Hypothesis. The Astronomical Journal, 82, 1013-1024.
http://dx.doi.org/10.1086/112164
|
[7]
|
Gingold, R.A. and Monaghan, J.J. (1977) Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Monthly Notice of the Royal Astronomical Society, 181, 375-389.
http://dx.doi.org/10.1093/mnras/181.3.375
|
[8]
|
Liu, G.R. and Liu, M.B. (2003) Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Publishing Co. Pte. Ltd., Singapore.
http://dx.doi.org/10.1142/9789812564405
|
[9]
|
Ritter, A. (1892) Die Fortpflanzung der Wasserwellen. Vereine Deutcher Ingenieure Zeitswchrift, 36, 947-954.
|
[10]
|
Schoklitsch, A. (1917) über Dambruchwellen. Sitzungberichten der Königliche Akademie der Wissenschaften, 126, 1489-1514.
|
[11]
|
Whitham, G.B. (1955) The Effects of Hydraulic Resistance in Dam-Break Problem. Proceedings of the Royal Society of London A, 227, 399-407.
http://dx.doi.org/10.1098/rspa.1955.0019
|
[12]
|
Stansby, P.K., Chegini, A. and Barnes, T.C.D. (1998) The Initial Stages of Dam-Break Flow. Journal of Fluid Mechanics, 374, 407-424.
http://dx.doi.org/10.1017/S0022112098009975
|
[13]
|
Jánosi, I.M., Jan, D., Szabó, K.G. and Tél T. (2004) Turbulent Drag Reduction in Dam-Break Flows. Experiments in Fluids, 37, 219-229.
http://dx.doi.org/10.1007/s00348-004-0804-4
|
[14]
|
Crespo, A.J.C., Gómez-Gesteria, M. and Dalrymple, R.A. (2008) Modeling Dam Break Behaviour over a Wet Bed by SPH Technique. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134, 313-320.
http://dx.doi.org/10.1061/(ASCE)0733-950X(2008)134:6(313)
|
[15]
|
Gomez-Gesteira, M., Crespo, A.J.C., Rogers, B.D., Dalrymple, R.A., Dominguez, J.M. and Barreiro, A. (2012) SPHysics—Development of a Free-Surface Fluid Solver—Part 2: Efficiency and Test Cases. Computers and Geosciences, 48, 300-307.
http://dx.doi.org/10.1016/j.cageo.2012.02.028
|
[16]
|
Lee, E.-S., Moulinec, C., Xu, R., Violeau, D., Laurence, D. and Stansby, P. (2008) Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method. Journal of Computational Physics, 227, 8417-8436.
http://dx.doi.org/10.1016/j.jcp.2008.06.005
|
[17]
|
LS-DYNA Keyword User’s Manual (2012) Livermore Software Technology Corporation (LSTC), Version 971 R6.1.0. Vol. 1 and 2.
|
[18]
|
Boyd, R., Royles, R. and El-Deeb, K.M.M. (2000) Simulation and Validation of UNDEX Phenomena Relating to Axisymmetric Structures. Proceedings of the 6th International LS-DYNA users conference, Dearborn, 9-11 April 2000, 21-36.
|
[19]
|
Johnson, A.F. and Holzapfel, M. (2006) Numerical Prediction of Damage in Composite Structures from Soft Body Impacts. Journal of Material Science, 41, 6622-6630.
http://dx.doi.org/10.1007/s10853-006-0201-x
|
[20]
|
Selezneva, M., Stone, P., Moffat, T., Behdinan, K. and Poon, C. (2010) Modeling Bird Impact on a Rotating Fan: The Influence of Bird Parameters. Proceedings of the 11th International LSDYNA Users Conference, Dearborn, 6-8 June 2010, 37-46.
|
[21]
|
Morris, J.P., Fox, P.J. and Zhu, Y. (1997) Modeling Low Reynolds Number Incompressible Flows Using SPH. Journal of Computational Physics, 136, 214-226.
http://dx.doi.org/10.1006/jcph.1997.5776
|
[22]
|
Monaghan, J.J. (1992) Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 30, 543-574.
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
|
[23]
|
Dalrymple, R.A. and Rogers, B.D. (2006) Numerical Modeling of Water Waves with the SPH Method. Costal Engineering, 53, 141-147.
http://dx.doi.org/10.1016/j.coastaleng.2005.10.004
|
[24]
|
Monaghan, J.J. (1994) Simulating Free Surface Flows with SPH. Journal of Computational Physics, 110, 399-406.
http://dx.doi.org/10.1006/jcph.1994.1034
|
[25]
|
Hallquist, J.O. (2006) LS-DYNA Theory Manual. Livermore Software Technology Corporation (LSTC), Livermore.
|
[26]
|
Jonsén, P., Pålsson, B.I. and Häggblad, H.- Å. (2012) A Novel Method for Full-Body Modeling of Grinding Charges in Tumbling Mills. Minerals Engineering, 33, 2-12. http://dx.doi.org/10.1016/j.mineng.2012.01.017
|
[27]
|
Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O. (2000) Computational Geometry: Algorithms and Applications. 2nd Edition, Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-04245-8
|
[28]
|
Ungar, A.A. (2010) Barycentric Calculus in Euclidean and Hyperbolic Geometry—A Comparative Introduction. World Scientific Publishing Co. Pte. Ltd., Singapore.
|
[29]
|
Hellström, J.G.I., Frishfelds, V. and Lundström, T.S. (2010) Mechanisms of Flow-Induced Deformation of Porous Media. Journal of Fluid Mechanics, 664, 220-237.
http://dx.doi.org/10.1017/S002211201000368X
|
[30]
|
Dilts, G.A. (2000) Moving Least-Squares Particle Hydrodynamics II: Conservation and Boundaries. International Journal for numerical methods in engineering, 48, 1503-1524.
http://dx.doi.org/10.1002/1097-0207(20000810)48:10<1503: :AID-NME832>3.0.CO;2-D
|
[31]
|
Monaghan, J.J. and Kos, A. (1999) Solitary Waves on a Cretan Beach. Journal of Waterway, Port, Coastal and Ocean Engineering, 125, 145-155.
http://dx.doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)
|
[32]
|
Bonet, J. and Lok T.-S.L. (1999) Variational and Momentum Preservation Aspects of Smoothed Particle Hydrodynamic Formulations. Computer Methods in Applied Mechanics and Engineering, 180, 97-115.
http://dx.doi.org/10.1016/S0045-7825(99)00051-1
|
[33]
|
Colagrossi, A. and Landrini, M. (2003) Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics. Journal of Computational Physics, 191, 448-475.
http://dx.doi.org/10.1016/S0021-9991(03)00324-3
|
[34]
|
Belytschko, T., Krongauz, Y., Dolbow, J. and Gerlach, C. (1998) On the Completeness of Meshfree Particle Methods. International Journal for Numerical Methods in Engineering, 43, 785-819.
http://dx.doi.org/10.1002/(SICI)1097-0207(19981115) 43:5<785::AID-NME420>3.0.CO;2-9
|
[35]
|
Dilts, G.A. (1999) Moving-Least-Square-Particle Hydrodynamics—I. Consistency and Stability. International Journal for Numerical Methods in Engineering, 44, 1115-1155.
http://dx.doi.org/10.1002/(SICI)1097-0207(19990320) 44:8<1115::AID-NME547>3.0.CO;2-L
|
[36]
|
Vila, J.P. (1999) On Particle Weighted Methods and Smoothed Particle Hydrodynamics. Mathematical Models and Methods in Applied Science, 9, 161-209.
http://dx.doi.org/10.1142/S0218202599000117
|
[37]
|
Chen, J.K. and Beraun J.E. (2000) A Generalized Smoothed Particle Hydrodynamics Method for Nonlinear Dynamic Problems. Computer Methods in Applied Mechanics and Engineering, 190, 225-239.
http://dx.doi.org/10.1016/S0045-7825(99)00422-3
|