Modelling Dam Break Evolution over a Wet Bed with Smoothed Particle Hydrodynamics: A Parameter Study

Abstract Full-Text HTML XML Download Download as PDF (Size:2391KB) PP. 248-260
DOI: 10.4236/eng.2015.75022    4,302 Downloads   5,323 Views   Citations

ABSTRACT

When investigating water flow in spillways and energy dissipation, it is important to know the behavior of the free surfaces. To capture the real dynamic behavior of the free surfaces is therefore crucial when performing simulations. Today, there is a lack in the possibility to model such phenomenon with traditional methods. Hence, this work focuses on a parameter study for one alternative simulation tool available, namely the meshfree, Lagrangian particle method Smoothed Particle Hydrodynamics (SPH). The parameter study includes the choice of equation-of-state (EOS), the artificial viscosity constants, using a dynamic versus a static smoothing length, SPH particle spatial resolution and the finite element method (FEM) mesh scaling of the boundaries. The two dimensional SPHERIC Benchmark test case of dam break evolution over a wet bed was used for comparison and validation. The numerical results generally showed a tendency of the wave front to be ahead of the experimental results, i.e. to have a greater wave front velocity. The choice of EOS, FEM mesh scaling as well as using a dynamic or a static smoothing length showed little or no significant effect on the outcome, though the SPH particle resolution and the choice of artificial viscosity constants had a major impact. A high particle resolution increased the number of flow features resolved for both choices of artificial viscosity constants, but at the expense of increasing the mean error. Furthermore, setting the artificial viscosity constants equal to unity for the coarser cases resulted in a highly viscous and unphysical solution, and thus the relation between the artificial viscosity constants and the particle resolution and its impact on the behavior of the fluid needed to be further investigated.

Cite this paper

Jonsson, P. , Jonsén, P. , Andreasson, P. , Lundström, T. and Hellström, J. (2015) Modelling Dam Break Evolution over a Wet Bed with Smoothed Particle Hydrodynamics: A Parameter Study. Engineering, 7, 248-260. doi: 10.4236/eng.2015.75022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Energi, S. (2012) The Electricity Year and Operations.
http://www.svenskenergi.se/Global/Statistik/El%C3%A5ret/
Sv%20Energi_el%C3%A5ret2012_ENG.pdf
[2] Violeau, D. (2012) Fluid Mechanics and the SPH Method: Theory and Applications. Oxford University Press, Oxford.
http://dx.doi.org/10.1093/acprof:oso/9780199655526.001.0001
[3] Scardovelli, R. and Zaleski, S. (1999) Direct Numerical Simulation of Free-Surface and Interfacial Flow. Annual Review of Fluid Mechanics, 31, 576-603.
http://dx.doi.org/10.1146/annurev.fluid.31.1.567
[4] Gomez-Gesteria, M., Rogers, B.D., Dalrymple, R.A. and Crespo, A.J.C. (2010) State-of-the-art of Classical SPH for Free-Surface Flows. Journal of Hydraulic Research, 48, 6-27.
http://dx.doi.org/10.1080/00221686.2010.9641242
[5] Monaghan, J.J. (2012) Smoothed Particle Hydrodynamics and Its Diverse Applications. Annual Review of Fluid Mechanics, 44, 323-346.
http://dx.doi.org/10.1146/annurev-fluid-120710-101220
[6] Lucy, L.B. (1977) A Numerical Approach to the Testing of the Fission Hypothesis. The Astronomical Journal, 82, 1013-1024.
http://dx.doi.org/10.1086/112164
[7] Gingold, R.A. and Monaghan, J.J. (1977) Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Monthly Notice of the Royal Astronomical Society, 181, 375-389.
http://dx.doi.org/10.1093/mnras/181.3.375
[8] Liu, G.R. and Liu, M.B. (2003) Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Publishing Co. Pte. Ltd., Singapore.
http://dx.doi.org/10.1142/9789812564405
[9] Ritter, A. (1892) Die Fortpflanzung der Wasserwellen. Vereine Deutcher Ingenieure Zeitswchrift, 36, 947-954.
[10] Schoklitsch, A. (1917) über Dambruchwellen. Sitzungberichten der Königliche Akademie der Wissenschaften, 126, 1489-1514.
[11] Whitham, G.B. (1955) The Effects of Hydraulic Resistance in Dam-Break Problem. Proceedings of the Royal Society of London A, 227, 399-407.
http://dx.doi.org/10.1098/rspa.1955.0019
[12] Stansby, P.K., Chegini, A. and Barnes, T.C.D. (1998) The Initial Stages of Dam-Break Flow. Journal of Fluid Mechanics, 374, 407-424.
http://dx.doi.org/10.1017/S0022112098009975
[13] Jánosi, I.M., Jan, D., Szabó, K.G. and Tél T. (2004) Turbulent Drag Reduction in Dam-Break Flows. Experiments in Fluids, 37, 219-229.
http://dx.doi.org/10.1007/s00348-004-0804-4
[14] Crespo, A.J.C., Gómez-Gesteria, M. and Dalrymple, R.A. (2008) Modeling Dam Break Behaviour over a Wet Bed by SPH Technique. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134, 313-320.
http://dx.doi.org/10.1061/(ASCE)0733-950X(2008)134:6(313)
[15] Gomez-Gesteira, M., Crespo, A.J.C., Rogers, B.D., Dalrymple, R.A., Dominguez, J.M. and Barreiro, A. (2012) SPHysics—Development of a Free-Surface Fluid Solver—Part 2: Efficiency and Test Cases. Computers and Geosciences, 48, 300-307.
http://dx.doi.org/10.1016/j.cageo.2012.02.028
[16] Lee, E.-S., Moulinec, C., Xu, R., Violeau, D., Laurence, D. and Stansby, P. (2008) Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method. Journal of Computational Physics, 227, 8417-8436.
http://dx.doi.org/10.1016/j.jcp.2008.06.005
[17] LS-DYNA Keyword User’s Manual (2012) Livermore Software Technology Corporation (LSTC), Version 971 R6.1.0. Vol. 1 and 2.
[18] Boyd, R., Royles, R. and El-Deeb, K.M.M. (2000) Simulation and Validation of UNDEX Phenomena Relating to Axisymmetric Structures. Proceedings of the 6th International LS-DYNA users conference, Dearborn, 9-11 April 2000, 21-36.
[19] Johnson, A.F. and Holzapfel, M. (2006) Numerical Prediction of Damage in Composite Structures from Soft Body Impacts. Journal of Material Science, 41, 6622-6630.
http://dx.doi.org/10.1007/s10853-006-0201-x
[20] Selezneva, M., Stone, P., Moffat, T., Behdinan, K. and Poon, C. (2010) Modeling Bird Impact on a Rotating Fan: The Influence of Bird Parameters. Proceedings of the 11th International LSDYNA Users Conference, Dearborn, 6-8 June 2010, 37-46.
[21] Morris, J.P., Fox, P.J. and Zhu, Y. (1997) Modeling Low Reynolds Number Incompressible Flows Using SPH. Journal of Computational Physics, 136, 214-226.
http://dx.doi.org/10.1006/jcph.1997.5776
[22] Monaghan, J.J. (1992) Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 30, 543-574.
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
[23] Dalrymple, R.A. and Rogers, B.D. (2006) Numerical Modeling of Water Waves with the SPH Method. Costal Engineering, 53, 141-147.
http://dx.doi.org/10.1016/j.coastaleng.2005.10.004
[24] Monaghan, J.J. (1994) Simulating Free Surface Flows with SPH. Journal of Computational Physics, 110, 399-406.
http://dx.doi.org/10.1006/jcph.1994.1034
[25] Hallquist, J.O. (2006) LS-DYNA Theory Manual. Livermore Software Technology Corporation (LSTC), Livermore.
[26] Jonsén, P., Pålsson, B.I. and Häggblad, H.- Å. (2012) A Novel Method for Full-Body Modeling of Grinding Charges in Tumbling Mills. Minerals Engineering, 33, 2-12.
http://dx.doi.org/10.1016/j.mineng.2012.01.017
[27] Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O. (2000) Computational Geometry: Algorithms and Applications. 2nd Edition, Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-04245-8
[28] Ungar, A.A. (2010) Barycentric Calculus in Euclidean and Hyperbolic Geometry—A Comparative Introduction. World Scientific Publishing Co. Pte. Ltd., Singapore.
[29] Hellström, J.G.I., Frishfelds, V. and Lundström, T.S. (2010) Mechanisms of Flow-Induced Deformation of Porous Media. Journal of Fluid Mechanics, 664, 220-237.
http://dx.doi.org/10.1017/S002211201000368X
[30] Dilts, G.A. (2000) Moving Least-Squares Particle Hydrodynamics II: Conservation and Boundaries. International Journal for numerical methods in engineering, 48, 1503-1524.
http://dx.doi.org/10.1002/1097-0207(20000810)48:10<1503:
:AID-NME832>3.0.CO;2-D
[31] Monaghan, J.J. and Kos, A. (1999) Solitary Waves on a Cretan Beach. Journal of Waterway, Port, Coastal and Ocean Engineering, 125, 145-155.
http://dx.doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)
[32] Bonet, J. and Lok T.-S.L. (1999) Variational and Momentum Preservation Aspects of Smoothed Particle Hydrodynamic Formulations. Computer Methods in Applied Mechanics and Engineering, 180, 97-115.
http://dx.doi.org/10.1016/S0045-7825(99)00051-1
[33] Colagrossi, A. and Landrini, M. (2003) Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics. Journal of Computational Physics, 191, 448-475.
http://dx.doi.org/10.1016/S0021-9991(03)00324-3
[34] Belytschko, T., Krongauz, Y., Dolbow, J. and Gerlach, C. (1998) On the Completeness of Meshfree Particle Methods. International Journal for Numerical Methods in Engineering, 43, 785-819.
http://dx.doi.org/10.1002/(SICI)1097-0207(19981115)
43:5<785::AID-NME420>3.0.CO;2-9
[35] Dilts, G.A. (1999) Moving-Least-Square-Particle Hydrodynamics—I. Consistency and Stability. International Journal for Numerical Methods in Engineering, 44, 1115-1155.
http://dx.doi.org/10.1002/(SICI)1097-0207(19990320)
44:8<1115::AID-NME547>3.0.CO;2-L
[36] Vila, J.P. (1999) On Particle Weighted Methods and Smoothed Particle Hydrodynamics. Mathematical Models and Methods in Applied Science, 9, 161-209.
http://dx.doi.org/10.1142/S0218202599000117
[37] Chen, J.K. and Beraun J.E. (2000) A Generalized Smoothed Particle Hydrodynamics Method for Nonlinear Dynamic Problems. Computer Methods in Applied Mechanics and Engineering, 190, 225-239.
http://dx.doi.org/10.1016/S0045-7825(99)00422-3

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.