Accurate Extraction of Effective Gate Resistance in RF MOSFET

Abstract

This paper describes the gate electrode resistance of MOSFET and non-quasi-static (NQS) effect for RF operation. The vertical current paths between the silicide layer and poly-silicon are considered in the gate electrode. The vertical current paths are not effective in long-channel devices, but become more significant in short-channel devices. The gate resistance including vertical current paths can reproduce the practical RF characteristics well. By careful separation of the above gate electrode resistance and the NQS effect, the small-signal gate-source admittance can be analyzed with 130-nm CMOS process. Elmore constant (κ) of the NQS gate-source resistance is about five for long-channel devices, while it decreases down to about three for short-channel devices.

Share and Cite:

Jo, I. and Matsuoka, T. (2015) Accurate Extraction of Effective Gate Resistance in RF MOSFET. Circuits and Systems, 6, 143-151. doi: 10.4236/cs.2015.65015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Rofougaran, A., Chang, J.Y.-C., Rofougaran, M. and Abidi, A.A. (1996) A 1 GHz CMOS RF Front-End IC for a Direct-Conversion Wireless Receiver. IEEE Journal of Solid-State Circuits, 31, 880-889.
[2] Razavi, B. (1999) CMOS Technology Characterization for Analog and RF Design. IEEE Journal of Solid-State Circuits, 34, 268-276.
[3] Kadoyama, T., Suzuki, N., Sasho, N., Iizuka, H., Nagase, I., Usukubo, H. and Katakura, M. (2004) A Complete Single-Chip GPS Receiver with 1.6-V 24-mW Radio in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 39, 562-568.
[4] Kamata, T., Okui, K., Fukasawa, M., Matsuoka, T. and Taniguchi, K. (2011) Low-Power Zero-IF Full-Segment ISDBT CMOS Tuner with Tenth-Order Baseband Filters. IEEE Transactions on Consumer Electronics, 57, 403-410.
[5] Huang, Q., Piazza, F., Orsatti, P. and Ohguro, T. (1998) The Impact of Scaling Down to Deep Submicron on CMOS RF Circuits. IEEE Journal of Solid-State Circuits, 33, 1023-1036.
http://dx.doi.org/10.1109/4.701249
[6] Enz, C.C. and Cheng, Y. (2000) MOS Transistor Modeling for RF IC design. IEEE Journal of Solid-State Circuits, 35, 186-201.
[7] Itoh, N., Ohguro, T., Katoh, K., Kimijima, H., Ishizuka, S., Kojima, K. and Miyakawa, H. (2003) Scalable Parasitic Components Model of CMOS for RF Circuit Design. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E38-A, 288-298.
[8] Kim, G., Murakami, B., Goto, M., Kihara, T., Nakamura, K., Shimizu, Y., Matsuoka, T. and Taniguchi, K. (2006) Small-Signal and Noise Model of Fully Depleted Silicon-on-Insulator Metal-Oxide-Semiconductor Devices for Low-Noise Amplifier. Japanese Journal of Applied Physics, 45, 6872-6877.
http://dx.doi.org/10.1143/JJAP.45.6872
[9] Shaeffer, D.K. and Lee, T.H. (1997) A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier. IEEE Journal of Solid-State Circuits, 32, 745-759.
[10] Shaeffer, D.K. and Lee, T.H. (2005) Corrections to “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier”. IEEE Journal of Solid-State Circuits, 40, 1397-1398.
[11] Litwin, A. (2001) Overlooked Interfacial Silicide-Polysilicon Gate Resistance in MOS Transistors. IEEE Transactions on Electron Devices, 48, 2179-2181.
http://dx.doi.org/10.1109/16.944214
[12] Utsurogi, Y., Haruoka, M., Matsuoka, T. and Taniguchi, K. (2005) CMOS Front-End Circuits of Dual-Band GPS Receiver. IEICE Transactions on Electronics, E88-C, 1275-1279.
http://dx.doi.org/10.1093/ietele/e88-c.6.1275
[13] Ko, J., Kim, J., Cho, S. and Lee, K. (2005) A 19-mW 2.6-mm2 L1/L2 Dual Band CMOS GPS Receiver. IEEE Journal of Solid-State Circuits, 40, 1414-1425.
http://dx.doi.org/10.1109/JSSC.2005.847326
[14] Jo, I., Bae, J., Matsuoka, T. and Ebinuma, T. (2013) Design of Triple-Band CMOS GPS Receiver RF Front-End. IEICE Electronics Express, 10, 20130126.
[15] Kihara, T., Matsuoka, T. and Taniguchi, K. (2010) A Transformer Noise-Canceling Ultra-Wideband CMOS Low-Noise Amplifier. IEICE Transactions on Electronics, E93-C, 187-199.
http://dx.doi.org/10.1587/transele.E93.C.187
[16] Razavi, B., Yan, R.H. and Lee, K.F. (1994) Impact of Distributed Gate Resistance on the Performance of MOS Devices. IEEE Transactions on Circuits and Systems I, 41, 750-754.
http://dx.doi.org/10.1109/81.331530
[17] Abou-Allam, E. and Manku, T. (1999) An Improved Transmission-Line Model for MOS Transistors. IEEE Transactions on Circuits and Systems II, 46, 1380-1387.
http://dx.doi.org/10.1109/82.803477
[18] Cheng, Y.H. and Matloubian, M. (2001) High Frequency Characterization of Gate Resistance in RF MOSFETs. IEEE Electron Device Letters, 22, 98-100.
http://dx.doi.org/10.1109/55.902844
[19] Smedes, T. and Klaassen, F.M. (1995) An Analytical Model for the Non-Quasi-Static Small-Signal Behaviour of Submicron MOSFETs. Solid-State Electronics, 38, 121-130.
http://dx.doi.org/10.1016/0038-1101(94)E0032-A
[20] Tsividis, Y. (1999) Operation and Modeling of the MOS Transistor. 2nd Edition, McGraw-Hill, New York.
[21] Kihara, T., Kim, G., Goto, M., Nakamura, K., Shimizu, Y., Matsuoka, T. and Taniguchi, K. (2007) Analytical Expression Based Design of a Low-Voltage FD-SOI CMOS Low-Noise Amplifier. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E90-A, 317-325.
http://dx.doi.org/10.1093/ietfec/e90-a.2.317
[22] Dormieu, B., Scheer, P., Charbuillet, C., Jaouen, H. and Danneville, F. (2013) Revisited RF Compact Model of Gate Resistance Suitable for High-K/Metal Gate Technology. IEEE Transactions on Electron Devices, 60, 13-19.
http://dx.doi.org/10.1109/TED.2012.2225146
[23] Sonehara, T., Hokazono, A., Akutsu, H., Sasaki, T., Uchida, H., Tomita, M., Kawanaka, S., Inaba, S. and Toyoshima, Y. (2011) Mechanism of Contact Resistance Reduction in Nickel Silicide Films by Pt Incorporation. IEEE Transactions on Electron Devices, 58, 3778-3786.
http://dx.doi.org/10.1109/TED.2011.2166557
[24] Scott, D.B., Hunter, W.R. and Shichijo, H. (1982) A Transmission Line Model for Silicided Diffusions: Impact on the Performance of VLS Circuits. IEEE Transactions on Electron Devices, 29, 651-661.
http://dx.doi.org/10.1109/T-ED.1982.20758
[25] Liu, W.D. and Hu, C.M. (2011) BSIM4 and MOSFET Modeling For IC Simulation. World Scientific Publishing, Singapore.
[26] Lee, H.-J. and Lee, S. (2013) Accurate Non-Quasi-Static Gate-Source Impedance Model of RF MOSFETs. Journal of Semiconductor Technology and Science, 13, 569-575.
http://dx.doi.org/10.5573/JSTS.2013.13.6.569
[27] Sodini, C.G., Ko, P.-K. and Moll, J.L. (1984) The Effect of High Fields on MOS Device and Circuit Performance. IEEE Transactions on Electron Devices, 31, 1386-1393.
http://dx.doi.org/10.1109/T-ED.1984.21721

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.