Well Behaved Class of Charge Analogue of Adler’s Relativistic Exact Solution
Mamta Joshi Pant, Bipin Chandra Tewari
DOI: 10.4236/jmp.2011.26058   PDF   HTML     3,784 Downloads   7,329 Views   Citations


We present a well behaved class of charge analogue of Alder’s (1974). This solution describes charge fluid balls with positively finite central pressure and positively finite central density; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. The solution gives us wide range of parameter K (0.96 ≤ K ≤ 5.2) for which the solution is well behaved and appropriate for relativistic theory; therefore, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degrees of suitability and by assuming the surface density ρb = 2 × 1014 g/cm3. Corresponding to K = 0.96 and X = 0.35, the maximum mass of the star comes out to be 3.43 MΘ with linear dimension 32.66 Km and central redshift and surface redshift 1.09374 and 0.5509 respectively.

Share and Cite:

M. Pant and B. Tewari, "Well Behaved Class of Charge Analogue of Adler’s Relativistic Exact Solution," Journal of Modern Physics, Vol. 2 No. 6, 2011, pp. 481-487. doi: 10.4236/jmp.2011.26058.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Adler R,: Jour. Math. Phys. 15, 727, (1974).
[2] Bonnor, W B., Mon Ton R Astr. Soc 137, 239(1965).
[3] Cataldo, M., Mitskievic, N.V.: Class. Quantum Grav. 9, 545 (1992).
[4] Dionysiou, D.D.: Astrophys. Space Sci. 85, 331 (1982).
[5] Durgapal M.C: J Phy. A Math Gen 15 , 2637(1982).
[6] Durgapal, M. C. and Fuloria, R.S.: 1985, Gen. Rel. Grav. 17, 671.
[7] Florides, P.S.: J. Phys. A: Math. Gen. 16, 1419 (1983).
[8] Graves J.C.and Brill D R: Phy. Rev. 120, 1507(1939).
[9] Gupta, Y.K., Gupta, R.S.: Acta Phys. Pol. B17, 855 (1986).
[10] Gupta, Y.K., Kumar, M.: Astrophys. Space Sci. 299(1), 43 (2005).
[11] Gupta, Y.K., Maurya,S.K.: Astrophys. Space Sci. DOI 10.1007/s10509-010-0445-4(2010).
[12] Leibovitz, C: Phy. Rev. D 185, 1664(1969).
[13] M. S. R. Delgaty, K.Lake.: Comp. Phys Commn. 115, 395, (1998).
[14] Nduka, A.: Acta Phys. Pol. B8, 75 (1977).
[15] Nduka, A.: Gen. Rel. Grav. 7, 493 (1976).
[16] Pant, Neeraj: Astro. Space Sci. 331,633 (2011).
[17] Pant, Neeraj: Astro. Space Sci. DOI 10.1007/s10509-010-0521-9 (2010).
[18] Singh, T., Yadav, R.B.S.: Acta Phys. Pol. B9, 475 (1978).
[19] Tolman, R. C.: Phy. Rev. 55, 367(1939).

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.