Share This Article:

Well Behaved Class of Charge Analogue of Adler’s Relativistic Exact Solution

Abstract Full-Text HTML Download Download as PDF (Size:159KB) PP. 481-487
DOI: 10.4236/jmp.2011.26058    3,614 Downloads   7,123 Views   Citations

ABSTRACT

We present a well behaved class of charge analogue of Alder’s (1974). This solution describes charge fluid balls with positively finite central pressure and positively finite central density; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. The solution gives us wide range of parameter K (0.96 ≤ K ≤ 5.2) for which the solution is well behaved and appropriate for relativistic theory; therefore, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degrees of suitability and by assuming the surface density ρb = 2 × 1014 g/cm3. Corresponding to K = 0.96 and X = 0.35, the maximum mass of the star comes out to be 3.43 MΘ with linear dimension 32.66 Km and central redshift and surface redshift 1.09374 and 0.5509 respectively.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Pant and B. Tewari, "Well Behaved Class of Charge Analogue of Adler’s Relativistic Exact Solution," Journal of Modern Physics, Vol. 2 No. 6, 2011, pp. 481-487. doi: 10.4236/jmp.2011.26058.

References

[1] Adler R,: Jour. Math. Phys. 15, 727, (1974).
[2] Bonnor, W B., Mon Ton R Astr. Soc 137, 239(1965).
[3] Cataldo, M., Mitskievic, N.V.: Class. Quantum Grav. 9, 545 (1992).
[4] Dionysiou, D.D.: Astrophys. Space Sci. 85, 331 (1982).
[5] Durgapal M.C: J Phy. A Math Gen 15 , 2637(1982).
[6] Durgapal, M. C. and Fuloria, R.S.: 1985, Gen. Rel. Grav. 17, 671.
[7] Florides, P.S.: J. Phys. A: Math. Gen. 16, 1419 (1983).
[8] Graves J.C.and Brill D R: Phy. Rev. 120, 1507(1939).
[9] Gupta, Y.K., Gupta, R.S.: Acta Phys. Pol. B17, 855 (1986).
[10] Gupta, Y.K., Kumar, M.: Astrophys. Space Sci. 299(1), 43 (2005).
[11] Gupta, Y.K., Maurya,S.K.: Astrophys. Space Sci. DOI 10.1007/s10509-010-0445-4(2010).
[12] Leibovitz, C: Phy. Rev. D 185, 1664(1969).
[13] M. S. R. Delgaty, K.Lake.: Comp. Phys Commn. 115, 395, (1998).
[14] Nduka, A.: Acta Phys. Pol. B8, 75 (1977).
[15] Nduka, A.: Gen. Rel. Grav. 7, 493 (1976).
[16] Pant, Neeraj: Astro. Space Sci. 331,633 (2011).
[17] Pant, Neeraj: Astro. Space Sci. DOI 10.1007/s10509-010-0521-9 (2010).
[18] Singh, T., Yadav, R.B.S.: Acta Phys. Pol. B9, 475 (1978).
[19] Tolman, R. C.: Phy. Rev. 55, 367(1939).

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.