[1]
|
Warwick, S.I., Francis, A. and Al-Shehbaz, I.A. (2006) Brassicaceae: Species Checklist and Database on CD Rom. Plant Systematic and Evolution, 259, 249-258. http://dx.doi.org/10.1007/s00606-006-0422-0
|
[2]
|
Bernardo, A., Howard-Hildige, R., O’Connell, A., Ryan, J., Rice, B., Roche, E. and Leahy, J.J. (2003) Camelina Oil as a Fuel for Diesel Transport Engines. Industrial Crops and Products, 17, 191-197.
http://dx.doi.org/10.1016/S0926-6690(02)00098-5
|
[3]
|
Fröhlich, A. and Rice, B. (2005) Evaluation of Camelina sativa Oil as a Feedstock for Biodiesel Production. Industrial Crops and Products, 21, 25-31. http://dx.doi.org/10.1016/j.indcrop.2003.12.004
|
[4]
|
Soriano, N.U. and Narami, A. (2012) Evaluation of Biodiesel Derived from Camelina sativa Oil. Journal of the American Oil Chemists’ Society, 89, 917-923. http://dx.doi.org/10.1007/s11746-011-1970-1
|
[5]
|
Zaleckas, E., Makareviciene, V. and Sendzikiene, E. (2012) Possibilities of Using Camelina sativa Oil for Producing Biodiesel Fuel. Transport, 27, 60-66. http://dx.doi.org/10.3846/16484142.2012.664827
|
[6]
|
Shonnard, D.R., Williams, L. and Kalnes, T.N. (2010) Camelina-Derived Jet Fuel and Diesel: Sustainable Advanced Biofuels. Environmental Progress & Sustainable Energy, 3, 382-392. http://dx.doi.org/10.1002/ep.10461
|
[7]
|
Agusdinata, D.B., Zhao, F., Ileleji, K. and De Laurentis, D. (2011) Life Cycle Assessment of Potential Biojet Fuel Production in the United States. Environmental Science & Technology, 45, 9133-9143.
http://dx.doi.org/10.1021/es202148g
|
[8]
|
Zubr, J. (1997) Oil-Seed Crop: Camelina sativa. Industrial Crops and Products, 6, 113-119.
http://dx.doi.org/10.1016/S0926-6690(96)00203-8
|
[9]
|
Rode, J. (2002) Study of autochthon Camelinasativa (L.) Crantz in Slovenia. Journal of Herbs, Spices & Medicinal Plants, 9, 313-318. http://dx.doi.org/10.1300/J044v09n04_08
|
[10]
|
Budin, J.T., Breene, W.M. and Putnam, D.H. (1995) Some Compositional Properties of Camelina (Camelina sativa (L.) Crantz) Seeds and Oils. Journal of the American Oil Chemists’ Society, 72, 309-315.
http://dx.doi.org/10.1007/BF02541088
|
[11]
|
Zubr, J. and Matthäus, B. (2002) Effects of Growth Conditions on Fatty Acids and Tocopherols in Camelina sativa Oil. Industrial Crops and Products, 15, 155-162. http://dx.doi.org/10.1016/S0926-6690(01)00106-6
|
[12]
|
Abramovic, H., Butinar, B. and Nikolic, V. (2007) Changes Occurring in Phenolic Content, Tocopherol Composition and Oxidative Stability of Camelina sativa Oil during Storage. Food Chemistry, 104, 903-909.
http://dx.doi.org/10.1016/j.foodchem.2006.12.044
|
[13]
|
Hrastar, R., Abramovic, H. and Kosir, I.J. (2012) In Situ Quality Evaluation of Camelina sativa Landrace. European Journal of Lipid Science and Technology, 114, 343-351. http://dx.doi.org/10.1002/ejlt.201100003
|
[14]
|
Gehringer, A., Friedt, W., Lühs, W. and Snowdon, R.J. (2006) Genetic Mapping of Agronomic Traits in False Flax (Camelina sativa Subsp. sativa). Genome, 49, 1555-1563. http://dx.doi.org/10.1139/g06-117
|
[15]
|
Vollmann, J., Grausgruber, H., Stift, G., Dryzhyruk, V. and Lelley, T. (2005) Genetic Diversity in Camelina germplasm as Revealed by Seed Quality Characteristics and RAPD Polymorphism. Plant Breeding, 124, 446-453.
http://dx.doi.org/10.1111/j.1439-0523.2005.01134.x
|
[16]
|
Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Kon’kova, N. and Francis, C. (2010) Camelina (Camelina sativa (L.) Crantz) as an Alternative Oilseed: Molecular and Ecogeographic Analyses. Genome, 53, 558-567.
http://dx.doi.org/10.1139/G10-034
|
[17]
|
Galasso, I., Manca, A., Braglia, L., Martinelli, T., Morello, L. and Breviario, D. (2011) h-TBP: An Approach Based on Intron-Length Polymorphism for the Rapid Isolation and Characterization of the Multiple Members of the β-Tubulin Gene Family in Camelina sativa (L.) Crantz. Molecular Breeding, 28, 635-645.
http://dx.doi.org/10.1007/s11032-010-9515-0
|
[18]
|
Manca, A., Pecchia, P., Mapelli, S., Masella, P. and Galasso, I. (2012) Evaluation of Genetic Diversity in a Camelina sativa (L.) Crantz Collection Using Microsatellite Markers and Biochemical Traits. Genetic Resources and Crop Evolution, 60, 1223-1236. http://dx.doi.org/10.1007/s10722-012-9913-8
|
[19]
|
Hutcheon, C., Ditt, R.F., Beilstein, M., Comai, L., Schroeder, J., Goldstein, E., Shewmaker, C.K., Nguyen, T., De Rocher, J. and Kiser, J. (2010) Polyploid Genome of Camelina sativa Revealed by Isolation of Fatty Acid Synthesis Genes. BMC Plant Biology, 10, 233. http://dx.doi.org/10.1186/1471-2229-10-233
|
[20]
|
Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W.E., Tuteja, R., Spillane, C., Robinson, S.J., Links, M.G., Clarke, C., Higgins, E.E., Huebert, T., Sharpe, A.G. and Parkin, I.A. (2014) The Emerging Biofuel Crop Camelina sativa Retains a Highly Undifferentiated Hexaploid Genome Structure. Nature Communications, 5, Article ID: 3706.
http://dx.doi.org/10.1038/ncomms4706
|
[21]
|
Plessers, A.G., McGregor, W.G., Carson, R.B. and Nakoneshny, W. (1962) Species Trials with Oilseed Plants: II. Camelina. Canadian Journal of Plant Science, 42, 452-459. http://dx.doi.org/10.4141/cjps62-073
|
[22]
|
Bardini, M., Lee, D., Donini, P., Mariani, A., Gianì, S., Toschi, M., Lowe, C. and Breviario, D. (2004) Tubulin-Based Polymorphism (TBP): A New Tool, Based on Functionally Relevant Sequences, to Assess Genetic Diversity in Plant Species. Genome, 47, 281-291. http://dx.doi.org/10.1139/g03-132
|
[23]
|
Breviario, D., Vance Baird, W., Sangoi, S., Hilu, K., Blumetti, P. and Gianì, S. (2007) High Polymorphism and Resolution in Targeted Fingerprinting with Combined β-Tubulin Introns. Molecular Breeding, 20, 249-259.
http://dx.doi.org/10.1007/s11032-007-9087-9
|
[24]
|
Braglia, L., Manca, A., Mastromauro, F. and Breviario, D. (2010) cTBP: A Successful ILP-Based Genotyping Method Targeted to Well Defined Experimental Needs. Diversity, 2, 572-585. http://dx.doi.org/10.3390/d2040572
|
[25]
|
Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J.P.T. and Hyvönen, J. (2013). Advances in Plant Gene Targeted and Functional Markers: A Review. Plant Methods, 9, 6. http://dx.doi.org/10.1186/1746-4811-9-6
|
[26]
|
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kuma, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739. http://dx.doi.org/10.1093/molbev/msr121
|
[27]
|
Doyle, J.J. and Doyle, J.L. (1987) A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19, 11-15.
|
[28]
|
Schwarzacher, T. and Heslop-Harrison, J.S. (2000) Practical in Situ Hybridization. BIOS Scientific Publishers, Oxford, 203.
|
[29]
|
Francis, A. and Warwick, S.I. (2009) The Biology of Canadian Weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Canadian Journal of Plant Science, 89, 791-810.
http://dx.doi.org/10.4141/CJPS08185
|
[30]
|
Jost, W., Baur, A., Nick, P., Reski, R. and Gorr, G. (2004) A Large Plant β-Tubulin Family with Minimal C-Terminal Variation but Differences in Expression. Gene, 340, 151-160. http://dx.doi.org/10.1016/j.gene.2004.06.009
|
[31]
|
Oakley, R.V., Wang, Y.S., Ramakrishna, W., Harding, S.A. and Tsai, C.J. (2007) Differential Expansion and Expression of α- and β-Tubulin Gene Families in Populus. Plant Physiology, 145, 961-973.
http://dx.doi.org/10.1104/pp.107.107086
|
[32]
|
Breviario, D., Gianì, S. and Morello, L. (2013) Multiple Tubulins: Evolutionary Aspects and Biological Implications. Plant Journal, 75, 202-218. http://dx.doi.org/10.1111/tpj.12243
|