Graphite Nanoplatelets Composite Materials: Role of the Epoxy-System in the Thermal Conductivity

Abstract

Polymers typically have intrinsic thermal conductivity much lower than other materials. Enhancement of this property may be obtained by the addition of conductive fillers. In this research, epoxy nanocomposites with exfoliated graphite nanoplatelets are prepared and characterized. The chosen approach requires no surface treatment and no sophisticated equipments allowing one to produce composites on a pilot scale. A significant increase of the thermal conductivity with the increasing of the graphite fillers content is nevertheless observed on 4 mm thick specimens. Our results viewed in the latest scientific findings suggest that the choice of resin is an important parameter to move towards composite materials with high thermal conductivity.

Share and Cite:

Diaz-Chacon, L. , Metz, R. , Dieudonné, P. , Bantignies, J. , Tahir, S. , Hassanzadeh, M. , Sosa, E. and Atencio, R. (2015) Graphite Nanoplatelets Composite Materials: Role of the Epoxy-System in the Thermal Conductivity. Journal of Materials Science and Chemical Engineering, 3, 75-87. doi: 10.4236/msce.2015.35009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Koci, V. and Loubal, T. (2012) LCA of Liquid Epoxy Resin Produced Based on Propylene and on Glycerine. Acta Environmentalica Universitatis Comenianae, 20, 62-67.
http://staryweb.fns.uniba.sk/index.php?id=4281
[2] Ebadi-Dehaghani, H. and Nazempour, M. (2012) Smart Nanoparticles: Thermal Conductivity of Nanoparticles Filled Polymers, [online]; Intech (Ed.), Chapter 23, 519-533.
[3] Haris, P.J.F. (2004) Carbon Nanotube Composites. International Materials Reviews, 49, 31-43.
http://dx.doi.org/10.1179/095066004225010505
[4] King, J.A., Tucker, K.W., Vogt, B.D., Weber, E.H. and Quan, C. (1999) Electrically and Thermally Conductive Nylon 6,6. Polymer Composites, 20, 643-654.
http://dx.doi.org/10.1002/pc.10387
[5] Han, Z. and Fina, A. (2011) Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Progress in Polymer Science, 36, 914-944.
http://dx.doi.org/10.1016/j.progpolymsci.2010.11.004
[6] Shahill, K.M.F. and Balandin, A. (2012) Graphene-Multilayer Grapheme Nanocomposites as Highly Efficient Thermal Interface materials. Nano Letters, 12, 861-867.
http://dx.doi.org/10.1021/nl203906r
[7] Balandin, A. (2011) Thermal Properties of Graphene and Nanostructured Carbon Materials. Nature Materials, 10, 569- 581.
http://dx.doi.org/10.1038/nmat3064
[8] Segal, M. (2009) Selling Grapheme by the Ton. Nature Nanotech, 4, 612-614.
http://dx.doi.org/10.1038/nnano.2009.279
[9] Pizza, A., Metz, R., Hassanzadeh, M. and Bantignies, J-L. (2014) Life Cycle Assessment of Nanocomposites Made of Thermally Conductive Graphite Nanoplatelets. The International Journal of Life Cycle Assessment, 19, 1226-1237.
http://dx.doi.org/10.1007/s11367-014-0733-2
[10] Pascault, J.P. and Williams, R.J.J. (2010) Epoxy Polymers. WILLEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Alemania.
[11] He, Y. (2005) Rapid Thermal Conductivity Measurement with a Hot Disk Sensor. Part 1: Theoretical Considerations. Thermochimica Acta, 436, 122-129.
http://dx.doi.org/10.1016/j.tca.2005.06.026
[12] He, Y. (2005) Rapid Thermal Conductivity Measurement with a Hot Disk Sensor. Part 2: Characterization of Thermal Greases. Thermochimica Acta, 436, 130-134.
http://dx.doi.org/10.1016/j.tca.2005.07.003
[13] Li, M., Wilkinson, D. and Patchigolla, K. (2005) Comparison of Particle Size Distributions Measured Using Different Techniques. Particulate Science and Technology, 23, 265-284.
http://dx.doi.org/10.1080/02726350590955912
[14] Debelak, B. and Lafdi, K. (2007) Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties. Carbon, 45, 1727-1734.
http://dx.doi.org/10.1016/j.carbon.2007.05.010
[15] Chatterjee, S., Wang, J.W., Kuo, W.S., Tai, N.H., Salzmann, C., Li, W.L., Hollertz, R., Nüesch, F.A. and Chu, B.T.T. (2012) Mechanical Reinforcement and Thermal Conductivity in Expanded Graphene Nanoplatelets Reinforced Epoxy Composites. Chemical Physics Letters, 531, 6-10.
http://dx.doi.org/10.1016/j.cplett.2012.02.006
[16] Zheng, C., Fan, Z.J., Wei, T. and Luo, G.L. (2009) Temperature Dependence of the Conductivity Behavior of Graphite Nanoplatelet-Filled Epoxy Resin Composites. Journal of Applied Polymer Science, 113, 1515-1519.
http://dx.doi.org/10.1002/app.30009
[17] Yu, A., Ramesh, P., Itkis, M.E., Bekyarova, E. and Haddon, R.C. (2007) Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials. Journal of Physical Chemistry C, 111, 7565-7569.
http://dx.doi.org/10.1021/jp071761s
[18] Ganguli, S., Roy, A.K. and Anderson, D.P. (2008) Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites. Carbon, 46, 806-817.
http://dx.doi.org/10.1016/j.carbon.2008.02.008
[19] Prolongo, S.G., Moriche, R., Jiménez-Suárez, A., Sanchez, M. and Urena, A. (2014) Advantages and Disadvantages of the Addition of Graphene Nanoplatelets to Epoxy Resins. European Polymer Journal, 61, 206-214.
http://dx.doi.org/10.1016/j.eurpolymj.2014.09.022
[20] Teng, C.-C., Ma, C.-C., Lu, C.-H., Yang, S.-Y., Lee, S.-H., Hsiao, M.-C., Yen, M.-Y., Chiou, K.-C. and Lee, T.-M. (2011) Thermal Conductivity and Structure of Non-Covalent Functionalized Graphene/Epoxy Composites. Carbon, 49, 5107-5116.
http://dx.doi.org/10.1016/j.carbon.2011.06.095
[21] Min, C., Yu, D.M., Cao, J.Y., Wang, G.L. and Feng, L.H. (2013) A Graphite Nanoplatelet/Epoxy Composite with High Dielectric Constant and High Thermal Conductivity. Carbon, 55, 116-125.
http://dx.doi.org/10.1016/j.carbon.2012.12.017
[22] Chandrasekaran, S., Seidel, C. and Schulte, K. (2013) Preparation and Characterization of Graphite Nano-Platelet (GNP)/Epoxy Nano-Composite: Mechanical, Electrical and Thermal Properties. European Polymer Journal, 49, 3878- 3888.
http://dx.doi.org/10.1016/j.eurpolymj.2013.10.008
[23] Loos, M., Coelho, L. and Pezzin, S. (2008) The Effect of Acetone Addition on the Properties of Epoxy. Polímeros: Ciencia e Tecnologia, 18, 76-80.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.