LiMnPO4: Review on Synthesis and Electrochemical Properties

Abstract

The olivine structured mixed lithium-transition metal phosphates LiMPO4 (M = Fe, Mn, Co) have attracted tremendous attention of many research teams worldwide as a promising cathode material for lithium batteries and for studying their magnetic and electrical properties. High energy density is required for mind- to large-scale batteries because the mounting spaces are quite small for vehicles and other energy storage applications. This constraint necessitates synthesis to yield high volumetric energy density and reliable battery performance. Development of eco-friendly, low cost and high energy density, LiMnPO4 cathode material became attractive due to its high operating voltage, which can be located inside of the electrochemical stability window of conventional electrolyte solutions and it offers more safety features due to the presence of a strong P-O covalent bond. This review is an overview of current research activities on LiMnPO4 cathodes and its carbon coating synthesized by various synthetic techniques.

Share and Cite:

Herrera, J. , Camacho-Montes, H. , Fuentes, L. and Álvarez-Contreras, L. (2015) LiMnPO4: Review on Synthesis and Electrochemical Properties. Journal of Materials Science and Chemical Engineering, 3, 54-64. doi: 10.4236/msce.2015.35007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Padhi, A.K., Nanjundaswamy, K.S. and Goodenough, J.B. (1997) Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 144, 1188-1194.
http://dx.doi.org/10.1149/1.1837571
[2] Huang, H., Yin, S.-C. and Nazar, L.F. (2001) Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates. Electrochemical and Solid-State Letters, 4, A170-A172.
http://dx.doi.org/10.1149/1.1396695
[3] Bramnik, N.N. and Ehrenberg, H. (2008) Precursor-Based Synthesis and Electrochemical Performance of LiMnPO4. Journal of Alloys and Compounds, 464, 259-264.
[4] Li, G., Azuma, H. and Tohda, M. (2002) LiMnPO4 as the Cathode for Lithium Batteries. Electrochemical and Solid-State Letters, 5, A135-A137.
http://dx.doi.org/10.1149/1.1475195
[5] Delacourt, C., Poizot, P., Morcrette, M., Tarascon, J.-M. and Masquelier, C. (2004) One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders. Chemistry of Materials, 16, 93-99.
[6] Arcon, D., Zorko, A., Cevc, P., Dominko, R., Bele, M., Jamnik, J., Jaglicic, Z. and Golosovsky, I. (2004) Weak ferromagnetism of LiMnPO4. Journal of Physics and Chemistry of Solids, 65, 1773-1777.
[7] Santoro, R.P., Segal, D.J. and Newman, R.E. (1966) Magnetic Properties of LiCoPO4 and LiNiPO4. Journal of Physics and Chemistry of Solids, 27, 1192-1193.
http://dx.doi.org/10.1016/0022-3697(66)90097-7
[8] Mays, J.M. (1963) Nuclear Magnetic Resonances and Mn-O-P-O-Mn Superexchange Linkages in Paramagnetic and Antiferromagnetic LiMnPO4. Physical Review Letters, 131, 38.
http://dx.doi.org/10.1103/PhysRev.131.38
[9] Goni, A., Lezama, L., Barberies, G.E., Pizzaro, J.L., Arriortua, M.I. and Rojo, T. (1996) Magnetic Properties of the LiMPO4 (M = Co, Ni) Compounds. Journal of Magnetism and Magnetic Materials, 164, 251-255.
http://dx.doi.org/10.1016/S0304-8853(96)00394-0
[10] Zaspel, C.E., Grigereit, T.E. and Drumheller, J.E. (1995) Soliton Contribution to the Electron Paramagnetic Resonance Linewidth in the Two-Dimensional Antiferromagnetic. Physical Review Letters, 74, 544-765.
[11] Martha, S.K., Grinblat, J., Haik, O., Zinigrad, E., Drezen, T., Miners, J.H., Exnar, I., Kay, A., Markovsky, B. and Aurbach, D. (2009) LiMn0.8Fe0.2PO4: An Advanced Cathode Material for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 48, 8559-8563.
http://dx.doi.org/10.1002/anie.200903587
[12] Son, C.G., Yang, H.M., Lee, G.W., Cho, A.R., Aravindan, V., Kim, H.S., Kim, W.S. and Lee, Y.S.J. (2011) Manipulation of Adipic Acid Application on the Electrochemical Properties of LiFePO4 at High Rate Performance. Journal of Alloys and Compounds, 509, 1279-1284.
http://dx.doi.org/10.1016/j.jallcom.2010.10.009
[13] Kang, B. and Ceder, G. (2010) Electrochemical Performance of LiMnPO4 Synthesized with Off-Stoichiometry. Journal of the Electrochemical Society, 157, A808-A811.
http://dx.doi.org/10.1149/1.3428454
[14] Hu, C.L., Yi, H.H., Fang, H.S., Yang, B., Yao, Y.C., Ma, W.H. and Dai, Y.N. (2010) Improving the Electrochemical Activity of LiMnPO4 via Mn-Site Co-Substitution with Fe and Mg. Electrochemistry Communications, 12, 1784-1787.
http://dx.doi.org/10.1016/j.elecom.2010.10.024
[15] Yi, H., Hu, C., Fang, H., Yang, B., Yao, Y., Ma, W. and Dai, Y. (2011) Optimized Electrochemical Performance of LiMn0.9Fe0.1-xMgxPO4/C for Lithium Ion Batteries. Electrochimica Acta, 56, 4052-4057.
http://dx.doi.org/10.1016/j.electacta.2011.01.121
[16] Hong, J., Wang, F., Wang, X. and Graetz, J. (2011) LiFexMn1-xPO4: A Cathode for Lithium-Ion Batteries. Journal of Power Sources, 196, 3659-3663.
http://dx.doi.org/10.1016/j.jpowsour.2010.12.045
[17] Muraliganth, T. and Manthiram, A. (2010) LiM1-yMyPO4 (M = Fe, Mn, Co, and Mg) Solid Solution Cathodes. Journal of Physical Chemistry C, 114, 15530-15540.
http://dx.doi.org/10.1021/jp1055107
[18] Lee, S.J. (2002) Materials Science and Engineering. Ph.D. Thesis, Kyungnam University, Changwon.
[19] Lee, J.H., Jung, K.Y. and Park, S.B. (1999) Modification of Titania Particles by Ultrasonic Spray Pyrolysis of Colloid. Journal of Materials Science, 34, 4089-4093.
[20] Teng, T.H., Yang, M.-R., Wu, S.H. and Chiang, Y.P. (2007) Electrochemical Properties of LiFe0.9Mg0.1PO4/Carbon Cathode Materials Prepared by Ultrasonic Spray Pyrolysis. Solid State Communications, 142, 389-392.
[21] Bakenov, Z. and Taniguchi, I. (2010) Electrochemical Performance of Nanocomposite LiMnPO4/C Cathode Materials for Lithium Batteries. Electrochemistry Communications, 12, 75-78.
http://dx.doi.org/10.1016/j.elecom.2009.10.039
[22] Bakenov, Z. and Taniguchi, I. (2010) Physical and Electrochemical Properties of LiMnPO4/C Composite Cathode Prepared with Different Conductive Carbons. Journal of Power Sources, 195, 7445-7451.
http://dx.doi.org/10.1016/j.jpowsour.2010.05.023
[23] Bakenov, Z. and Taniguchi, I. (2011) Synthesis of Spherical LiMnPO4/C Composite Microparticles. Materials Research Bulletin, 46, 1311-1314.
http://dx.doi.org/10.1016/j.materresbull.2011.03.020
[24] Doan, T.N.L., Bakenov, Z. and Taniguchi, I. (2010) Preparation of Carbon Coated LiMnPO4 Powders by a Combination of Spray Pyrolysis with Dry Ball-Milling Followed by Heat Treatment. Advanced Powder Technology, 21, 187- 196.
http://dx.doi.org/10.1016/j.apt.2009.10.016
[25] Doan, T.N.L. and Taniguchi, I. (2011) Cathode Performance of LiMnPO4/C Nanocomposites Prepared by a Combination of Spray Pyrolysis and Wet Ball-Milling Followed by Heat Treatment. Journal of Power Sources, 196, 1399-1408.
http://dx.doi.org/10.1016/j.jpowsour.2010.08.067
[26] Taniguchi, I., Doan, T.N.L. and Shao, B. (2011) Synthesis and Electrochemical Characterization of LiCoxMn1-xPO4/C Nanocomposites. Electrochimica Acta, 56, 7680-7685.
http://dx.doi.org/10.1016/j.electacta.2011.06.055
[27] Oh, S.M., Jung, H.G., Yoon, C.S., Myung, S.T., Chen, Z., Amine, K. and Sun, Y.K. (2011) Enhanced Electrochemical Performance of Carbon-LiMn1-xFexPO4 Nanocomposite Cathode for Lithium-Ion Batteries. Journal of Power Sources, 196, 6924-6928.
http://dx.doi.org/10.1016/j.jpowsour.2010.11.159
[28] Oh, S.M., Oh, S.W., Myung, S.T., Lee, S.M. and Sun, Y.K. (2010) The Effects of Calcination Temperature on the Electrochemical Performance of LiMnPO4 Prepared by Ultrasonic Spray Pyrolysis. Journal of Alloys and Compounds, 506, 372-376.
http://dx.doi.org/10.1016/j.jallcom.2010.07.010
[29] Oh, S.M., Oh, S.W., Yoon, C.S., Scrosati, B., Amine, K. and Sun, Y.K. (2010) High-Performance Carbon-LiMnPO4 Nanocomposite Cathode for Lithium Batteries. Advanced Functional Materials, 20, 3260-3265.
http://dx.doi.org/10.1002/adfm.201000469
[30] Xiao, J., Chernova, N.A., Upreti, S., Chen, X., Li, Z., Deng, Z., Choi, D., Xu, W., Nie, Z., Graff, G.L., Liu, J., Whittingham, M.S. and Zhang, J.-G. (2011) Electrochemical Performances of LiMnPO4 Synthesized from Non-Stoichio- metric Li/Mn Ratio. Physical Chemistry Chemical Physics, 13, 18099-18106.

http://dx.doi.org/10.1039/c1cp22658d
[31] Kim, D.-K., Park, H.-M., Jung, S.-J., Jeong, Y.U., Lee, J.-H. and Kim, J.-J. (2006) Effect of Synthesis Conditions on the Properties of LiFePO4 for Secondary Lithium Batteries. Journal of Power Sources, 159, 237-240.
http://dx.doi.org/10.1016/j.jpowsour.2006.04.086
[32] Oh, S.-M., Myung, S.-T., Choi, Y.S., Oh, K.H. and Sun, Y.-K. (2011) Co-Precipitation Synthesis of Micro-Sized Spherical LiMn0.5Fe0.5PO4 Cathode Material for Lithium Batteries. Journal of Materials Chemistry, 21, 19368-19374.
http://dx.doi.org/10.1039/c1jm13889h
[33] Sun, Y.-K., Oh, S.-M., Park, H.-K. and Scrosati, B. (2011) Micrometer-Sized, Nanoporous, High-Volumetric-Capacity LiMn0.85Fe0.15PO4 Cathode Material for Rechargeable Lithium-Ion Batteries. Advanced Materials, 23, 5050-5054.
http://dx.doi.org/10.1002/adma.201102497
[34] Oh, S.-M., Myung, S.-T., Park, J.B., Scrosati, B., Amine, K. and Sun, Y.K. (2012) Double-Structured LiMn0.85Fe0.15PO4 Coordinated with LiFePO4 for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 51, 1853- 1856.
http://dx.doi.org/10.1002/anie.201107394
[35] Wold, A. and Dwight, K. (1993) Solid State Chemistry: Synthesis, Structure, and Properties of Selected Oxides and Sulfides. Chapman & Hall Incorporation, New York.
http://dx.doi.org/10.1007/978-94-011-1476-9
[36] Avvakumov, E.G., Senna, M. and Kosova, N. (2001) Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies. Kluwer Academic Publishers, New York.
[37] Sōmiya, S. and Roy, R. (2000) Hydrothermal Synthesis of Fine Oxide Powders. Bulletin of Materials Science, 23, 453-460.
[38] Fang, H., Li, L. and Li, G. (2007) Hydrothermal Synthesis of Electrochemically Active LiMnPO4. Chemistry Letters, 36, 436-437.
http://dx.doi.org/10.1246/cl.2007.436
[39] Fang, H., Li, L., Yang, Y., Yan, G. and Li, G. (2008) Carbonate Anions Controlled Morphological Evolution of LiMnPO4 Crystals. Chemistry Letters, 2008, 1118-1120.
http://dx.doi.org/10.1039/b716916g
[40] Chen, G., Wilcox, J.D. and Richardson, T.J. (2008) Improving the Performance of Lithium Manganese Phosphate through Divalent Cation Substitution. Electrochemical and Solid-State Letters, 11, A190-A194.
http://dx.doi.org/10.1149/1.2971169
[41] Wang, Y., Yang, Y. and Shao, H. (2009) Fabrication of Microspherical LiMnPO4 Cathode Material by a Facile One-Step Solvothermal Process. Materials Research Bulletin, 44, 2139-2142.
http://dx.doi.org/10.1016/j.materresbull.2009.06.019
[42] Wang, Y., Yang, Y. and Shao, H. (2010) Enhanced Electrochemical Performance of Unique Morphological Cathode Material Prepared by Solvothermal Method. Solid State Communications, 150, 81-85.
http://dx.doi.org/10.1016/j.ssc.2009.09.046
[43] Saravanan, K., Vittal, J.J., Reddy, M.V., Chowdari, B.V.R. and Balaya, P. (2010) Storage Performance of LiFe1-xMnxPO4 Nanoplates (x=0, 0.5, and 1). Journal of Solid State Electrochemistry, 14, 1755-1760.
http://dx.doi.org/10.1007/s10008-010-1031-y
[44] Manthiram, A., Vadivel Murugan, A., Sarkar, A. and Muraliganth, T. (2008) Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion. Energy & Environmental Science, 1, 621-638.
http://dx.doi.org/10.1039/b811802g
[45] Vadivel Murugan, A., Muraliganth, T., Ferreira, P.J. and Manthiram, A. (2009) Dimensionally Modulated, Single- Crystalline LiMPO4 (M= Mn, Fe, Co, and Ni) with Nano-Thumblike Shapes for High-Power Energy Storage. Inorganic Chemistry, 48, 946-952.
http://dx.doi.org/10.1021/ic8015723
[46] Vadivel Murugan, A., Muraliganth, T. and Manthiram, A. (2009) One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M=Mn, Fe, and Co) Cathodes. Journal of the Electrochemical Society, 156, A79-A83.
http://dx.doi.org/10.1149/1.3028304
[47] Ji, H., Yang, G., Ni, H., Roy, S., Pinto, J. and Jiang, X. (2011) General Synthesis and Morphology Control of LiMnPO4 Nanocrystals via Microwave-Hydrothermal Route. Electrochimica Acta, 56, 3093-3100.

http://dx.doi.org/10.1016/j.electacta.2011.01.079
[48] Ni, J. and Gao, L. (2011) Effect of Copper Doping on LiMnPO4 Prepared via Hydrothermal Route. Journal of Power Sources, 196, 6498-6501.
http://dx.doi.org/10.1016/j.jpowsour.2011.03.073
[49] Wang, F., Yang, J., Gao, P., NuLi, Y. and Wang, J. (2011) Morphology Regulation and Carbon Coating of LiMnPO4 Cathode Material for Enhanced Electrochemical Performance. Journal of Power Sources, 196, 10258-10262.
http://dx.doi.org/10.1016/j.jpowsour.2011.08.090
[50] Dokko, K., Hachida, T. and Watanabe, M.J. (2011) LiMnPO4 Nanoparticles Prepared through the Reaction between Li3PO4 and Molten Aqua-Complex of MnSO4. Journal of the Electrochemical Society, 158, A1275-A1281.
http://dx.doi.org/10.1149/2.015112jes
[51] Sangeeta, D. and LaGraff, J.R. (2005) Inorganic Materials Chemistry Desk Reference. 2nd Edition, CRC Press, Boca Raton.
[52] Bergna, H.E. and Roberts, W.O. (2006) Colloidal Silica: Fundamentals and Applications. 2nd Edition, CRC Press, Boca Raton.
[53] Brinker, C.J. and Scherer, G.W. (1990) Solgel Science: The Physics and Chemistry of Solgel Processing. Academic Press Incorporation, San Diego.
[54] Hench, L.L. and West, J.K. (1990) The Sol-Gel Process. Chemical Reviews, 90, 33-72.
[55] Yang, J. and Xu, J.J. (2006) Synthesis and Characterization of Carbon-Coated Lithium Transition Metal Phosphates LiMPO4 (M=Fe, Mn, Co, Ni) Prepared via a Nonaqueous Sol-Gel Route. Journal of Power Sources, 153, A716-A723.
http://dx.doi.org/10.1149/1.2168410
[56] Kwon, N.H., Drezen, T., Exnar, I., Teerlinck, I., Isono, M. and Graetzel, M. (2006) Enhanced Electrochemical Performance of Mesoparticulate LiMnPO4 for Lithium Ion Batteries. Electrochemical and Solid-State Letters, 9, A277-A280.
http://dx.doi.org/10.1149/1.2191432
[57] Doi, T., Yatomi, S., Kida, T., Okada, S. and Yamaki, J.I. (2011) Liquid-Phase Synthesis of Uniformly Nanosized LiMnPO4 Particles and Their Electrochemical Properties for Lithium-Ion Batteries. Crystal Growth & Design, 9, 4990- 4992.
[58] Yang, G., Ni, H., Liu, H., Gao, P., Ji, H., Roy, S., Pinto, J. and Jiang, X. (2011) The Doping Effect on the Crystal Structure and Electrochemical Properties of LiMnxM1-xPO4 (M=Mg, V, Fe, Co, Gd). Journal of Power Sources, 196, 4747-4755.
[59] Herrera, J., Fuentes, L., Diaz, S., Camacho, H., Trinidad, J. and Alvarez, L. (2014) Synthesis and Structural Characterization of Manganese Olivine Lithium Phosphate. Journal Alloys and Compounds, in press.
[60] Nithya, C., Thirunakaran, R., Sivashanmugam, A. and Gopukumar, S. (2012) LiCoxMn1-xPO4/C: A High Performing Nanocomposite Cathode Material for Lithium Rechargeable Batteries. Chemistry—An Asian Journal, 7, 163-168.
http://dx.doi.org/10.1002/asia.201100485
[61] Murugan, A.V., Muraliganth, T. and Manthiram, A. (2009) One-pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M= Mn, Fe, and Co) Cathodes. Journal of the Electrochemical Society, 156, A79-A83.
http://dx.doi.org/10.1149/1.3028304
[62] Bramnik, N.N., Nikolowski, K., Trots, D.M. and Ehrenberg, H. (2008) Thermal Stability of LiCoPO4 Cathodes. Electrochemical and Solid-State Letters, 11, A89-A93.
http://dx.doi.org/10.1149/1.2894902
[63] Whittingham, M.S. (2004) Lithium Batteries and Cathode Materials. Chemical Reviews, 104, 4271-4301.
http://dx.doi.org/10.1021/cr020731c
[64] Baek, D.-H., Kim, J.-K., Shin, Y.-J., Chauhan, G.S., Ahn, J.-H. and Kim, K.-W. (2009) Effect of Firing Temperature on the Electrochemical Performance of LiMn0.4Fe0.6PO4/C Materials Prepared by Mechanical Activation. Journal of Power Sources, 189, 59-65.
http://dx.doi.org/10.1016/j.jpowsour.2008.11.051
[65] Kobayashi, G., Yamada, A., Nishimura, S.-I., Kanno, R., Kobayashi, Y., Seki, S., Ohno, Y. and Miyashiro, H. (2009) Shift of Redox Potential and Kinetics in Lix(MnyFe1-y)PO4. Journal of Power Sources, 189, 397-401.
http://dx.doi.org/10.1016/j.jpowsour.2008.07.085
[66] Wang, Y. and Cao. G. (2008) Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries. Advanced Materials, 20, 2251-2269.
http://dx.doi.org/10.1002/adma.200702242

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.