[1]
|
Carlsson, L.A. and Kardomateas, G.A. (2011) Structural and Failure Mechanics of Sandwich Composites. Solid Mechanics and Its Applications, 121, Online.
|
[2]
|
Kiratisaevee, H. and Cantwell, W.J. (2005) Low-Velocity Impact Response of High-Performance Aluminum Foam Sandwich Structures. Journal of Reinforced Plastics and Composites, 24, 1057-1072.
http://dx.doi.org/10.1177/0731684405048205
|
[3]
|
Hazizan, M.A. and Cantwell, W.J. (2003) The Low Velocity Impact Response of an Aluminium Honeycomb Sandwich Structure. Composites Part B: Engineering, 34, 679-687. http://dx.doi.org/10.1016/S1359-8368(03)00089-1
|
[4]
|
Zhao, H., Elnasri, I. and Girard, Y. (2007) Perforation of Aluminium Foam Core Sandwich Panels under Impact Loading—An Experimental Study. International Journal of Impact Engineering, 34, 1246-1257.
http://dx.doi.org/10.1016/j.ijimpeng.2006.06.011
|
[5]
|
Ashby, M.F., Evans, A.G., Fleck, N.A., et al. (2000) Metal Foams: A Design Guide. Butterworth Heinemann, Boston.
|
[6]
|
Ruan, D., Lu, G. and Wong, Y.C. (2010) Quasi-Static Indentation Tests on Aluminium Foam Sandwich Panels. Composite Structures, 92, 2039-2046. http://dx.doi.org/10.1016/j.compstruct.2009.11.014
|
[7]
|
Abrate, S. (1998) Impact on Composite Structures. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511574504
|
[8]
|
Villanueva, G.R. and Cantwell, W.J. (2004) The High Velocity Impact Response of Composite and FML-Reinforced Sandwich Structures. Composites Science and Technology, 64, 35-54.
http://dx.doi.org/10.1016/S0266-3538(03)00197-0
|
[9]
|
Roach, A.M., Evans, K.E. and Jones, N. (1998) The Penetration Energy of Sandwich Panel Elements under Static and Dynamic Loading. Part I. Composite Structures, 42, 119-134. http://dx.doi.org/10.1016/S0263-8223(98)00061-0
|
[10]
|
Liaghat, G.H., Alavinia, A., Daghyani, H.R. and Sadighi, M. (2010) Ballistic Limit Evaluation for Impact of Cylindrical Projectiles on Honeycomb Panels. Thin-Walled Structures, 48, 55-61.
http://dx.doi.org/10.1016/j.tws.2009.07.008
|
[11]
|
Leijten, J., Bersee, H.E.N., Bergsma, O.K. and Beukers, A. (2009) Experimental Study of the Low-Velocity Impact Behavior of Primary Sandwich Structures in Aircraft. Composites Part A: Applied Science and Manufacturing, 40, 164-175.
|
[12]
|
Flores-Johnson, E.A. and Li, Q.M. (2011) Experimental Study of the Indentation of Sandwich Panels with Carbon Fibre-Reinforced Polymer Face Sheets and Polymeric Foam Core. Composites Part B: Engineering, 42, 1212-1219.
http://dx.doi.org/10.1016/j.compositesb.2011.02.013
|
[13]
|
Schubel, P.M., Luo, J.J. and Daniel, I.M. (2005) Low Velocity Impact Behavior of Composite Sandwich Panels. Composites Part A: Applied Science and Manufacturing, 36, 1389-1396.
http://dx.doi.org/10.1016/j.compositesa.2004.11.014
|
[14]
|
Hayman, B. (2007) Approaches to Damage Assessment and Damage Tolerance for FRP Sandwich Structures. Journal of Sandwich Structures and Materials, 9, 571-596. http://dx.doi.org/10.1177/1099636207070853
|
[15]
|
Nasirzadeh, R. and Sabet, A.R. (2014) Study of Foam Density Variations in Composite Sandwich Panels under High Velocity Impact Loading. International Journal of Impact Engineering, 63, 129-139.
http://dx.doi.org/10.1016/j.ijimpeng.2013.08.009
|
[16]
|
Linul, E., Serban, D.A., Voiconi, T., Marsavina, L. and Sadowski, T. (2014) Energy-Absorption and Efficiency Diagrams of Rigid PUR Foams. Key Engineering Materials, 601, 246-249.
http://dx.doi.org/10.4028/www.scientific.net/KEM.601.246
|
[17]
|
Apostol, D.A. and Constantinescu, D.M. (2012) Influence of Speed of Testing and Temperature on the Behaviour of Polyurethane Foams. Revue Roumaine des Sciences, 1, 73-75.
|