Share This Article:

A Unified Approach for the Multivariate Analysis of Contingency Tables

Abstract Full-Text HTML XML Download Download as PDF (Size:286KB) PP. 223-232
DOI: 10.4236/ojs.2015.53024    2,832 Downloads   3,584 Views   Citations


We present a unified approach to describing and linking several methods for representing categorical data in a contingency table. These methods include: correspondence analysis, Hellinger distance analysis, the log-ratio alternative, which is appropriate for compositional data, and the non-symmetrical correspondence analysis. We also present two solutions working with cummulative frequencies.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Cuadras, C. and Cuadras, D. (2015) A Unified Approach for the Multivariate Analysis of Contingency Tables. Open Journal of Statistics, 5, 223-232. doi: 10.4236/ojs.2015.53024.


[1] Cuadras, C.M. (2002) Correspondence Analysis and Diagonal Expansions in Terms of Distribution Functions. Journal of Statistical Planning and Inference, 103, 137-150.
[2] Cuadras, C.M. and Cuadras, D. (2006) A Parametric Approach to Correspondence Analysis. Linear Algebra and its Applications, 417, 64-74.
[3] Cuadras, C.M., Cuadras, D. and Greenacre, M. (2006) A Comparison of Different Methods for Representing Categorical Data. Communications in Statistics-Simulation and Computation, 35, 447-459.
[4] Greenacre, M. (2009) Power Transformations in Correspondence Analysis. Computational Statistics and Data Analysis, 53, 3107-3116.
[5] Cuadras, C.M. and Fortiana, J. (1996) Weighted Continuous Metric Scaling. In: Gupta, A.K. and Girko, V.L., Eds., Multidimensional Statistical Analysis and Theory of Random Matrices, VSP, The Netherlands, 27-40.
[6] Cuadras, C.M., Fortiana, J. and Oliva, F. (1997) The Proximity of an Individual to a Population with Applications in Discriminant Analysis. Journal of Classification, 14, 117-136.
[7] Goodman, L.A. (1993) Correspondence Analysis, Association Analysis, and Generalized Nonindependence Analysis of Contingency Tables: Saturated and Unsaturated Models, and Appropriate Graphical Displays. In: Cuadras, C.M. and Rao, C.R., Eds., Multivariate Analysis: Future Directions 2, Elsevier, Amsterdam, 265-294.
[8] Beh, E.J. (2004) Simple Correspondence Analysis: A Bibliographic Review. International Statistical Review, 72, 257-284.
[9] Benzecri, J.-P. (1976) L’Analyse des Donnees. II. L’Analyse des Correspondances. Deuxieme Edition. Dunod, Paris.
[10] Greenacre, M.J. (1984) Theory and Applications of Correspondence Analysis. Academic Press, London.
[11] Lebart, L. and Saporta, G. (2014) Historical Elements of Correspondence Analysis and Multiple Correspondence Analysis. In: Blasius, J. and Greenacre, M., Eds., Visualization and Verbalization of Data, CRC Press, Taylor & Francis Group, New York, 31-44.
[12] Cuadras, C.M., Fortiana, J. and Greenacre, M. (2000) Continuous Extensions of Matrix Formulations in Correspondence Analysis, with Applications to the FGM Family of Distributions. In: Heijmans, R.D.H., Pollock, D.S.G. and Satorra, A., Eds., Innovations in Multivariate Statistical Analysis, Kluwer Academic Publishers, Dordrecht, 101-116.
[13] Cuadras, C.M. (2014) Nonlinear Principal and Canonical Directions from Continuous Extensions of Multidimensional Scaling. Open Journal of Statistics, 4, 132-149.
[14] Greenacre, M. (2010) Log-Ratio Analysis Is a Limiting Case of Correspondence Analysis. Mathematical Geosciences, 42, 129-134.
[15] Domenges, D. and Volle, M. (1979) Analyse Factorielle Spherique: Une Exploration. Annales de L’INSEE, 35, 3-84.
[16] Rao, C.R. (1995) A Review of Canonical Coordinates and an Alternative to Correspondence Analysis Using Hellinger Distance. Questiio, 19, 23-63.
[17] Beh, E.J. and D’Ambra, L. (2009) Some Interpretative Tools for Non-Symmetrical Correspondence Analysis. Journal of Classification, 26, 55-76.
[18] Kroonenberg, P.M. and Lombardo, R. (1999) Nonsymmetric Correspondence Analysis: A Tool for Analyzing Contingency Tables with a Dependence Structure. Multivariate Behavioral Research, 34, 367-396.
[19] Lauro, N. and D’Ambra, L. (1984) L’analyse non symetrique des correspondances. In: Diday, E., Jambu, M., Lebart, L., Pages, J. and Tomassone, R., Eds., Data Analysis and Informatics III, North Holland, Amsterdam, 433-446.
[20] Aitchison, J. and Greenacre, M. (2002) Biplots of Compositional Data. Applied Statistics, 51, 375-392.
[21] Greenacre, M. and Lewi, P. (2009) Distributional Equivalence and Subcompositional Coherence in the Analysis of Contingency Tables, Ratio-Scale Measurements and Compositional Data. Journal of Classification, 26, 29-54.
[22] Greenacre, M. (2008) Dynamic Graphics of Parametrically Linked Multivariate Methods Used in Compositional Data Analysis. Universitat Pompeu Fabra, Barcelona.
[23] Lewi, P.J. (1976) Spectral Mapping, a Technique for Classifying Biological Activity Profiles of Chemical Compounds. Arzneimittel Forschung—Drug Research, 26, 1295-1300.
[24] Taguchi, G. (1974) A New Statistical Analysis for Clinical Data, the Accumulating Analysis in Contrast with the Chi-Square Test. Saishin Igaku (The New Medicine), 20, 806-813.
[25] Nair, V.N. (1987) Chi-Square Type Tests for Ordered Categories in Contingency Tables. Journal of the American Statistical Association, 82, 283-291.
[26] Beh, E.J., D’Ambra, L. and Simonetti, B. (2011) Correspondence Analysis of Cumulative Frequencies Using a Decomposition of Taguchi’s Statistic. Communications in Statistics-Theory and Methods, 40, 1620-1632.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.