[1]
|
Armand, M. and Tarascon, J.-M. (2008) Building Better Batteries. Nature, 451, 652-657. http://dx.doi.org/10.1038/451652a
|
[2]
|
Heng, F. and Chen, J. (2012) Metal-Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts. Chemical Society Reviews, 41, 2172-2192. http://dx.doi.org/10.1039/c1cs15228a
|
[3]
|
Lee, S., Kim, S.T., Cao, R., et al. (2011) Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 1, 34-50.
|
[4]
|
Abraham, K.M. and Jiang, Z. (1996) A Polymer Electrolyte—Based Rechargeable Lithium/Oxygen Battery. Journal of the Electrochemical Society, 143, 1-5. http://dx.doi.org/10.1149/1.1836378
|
[5]
|
Girishkumar, G., McCloskey, B., Luntz, A., Swanson, S. and Wilcke, W. (2010) Lithium-Air Battery: Promise and Challenges. Journal of Physical Chemistry Letters, 1, 2193-2203. http://dx.doi.org/10.1021/jz1005384
|
[6]
|
Lu, Y.-C., Kwabi, D.G., Yao, K.P.C., et al. (2011) The Discharge Rate Capability of Rechargeable Li-O2 Batteries. Energy & Environmental Science, 4, 2999-3007. http://dx.doi.org/10.1039/c1ee01500a
|
[7]
|
Lu, Y.-C., Gasteiger, H.A., Parent, M.C., Chiloyan, V. and Shao-Horn, Y. (2010) The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li-Oxygen Batteries. Electrochemical and Solid-State Letters, 13, A69- A72. http://dx.doi.org/10.1149/1.3363047
|
[8]
|
Goodenough, J.B. and Kim, Y. (2009) Challenges for Rechargeable Li Batteries. Chemistry of Materials, 22, 587-603. http://dx.doi.org/10.1021/cm901452z
|
[9]
|
Debart, A., Bao, J., Armstrong, G. and Bruce, P.G. (2010) An O2 Cathode for Rechargeable Lithium Batteries: The Effect of a Catalyst. Journal of Power Sources, 174, 1177-1182. http://dx.doi.org/10.1016/j.jpowsour.2007.06.180
|
[10]
|
Debart, A., Paterson, A.J., Bao, J. and Bruce, P.G. (2008) Alpha-MnO2 Nanowires: A Catalyst for the O-2 Electrode in Rechargeable Lithium Batteries. Angew. Angewandte Chemie International Edition, 47, 4521-4524. http://dx.doi.org/10.1002/anie.200705648
|
[11]
|
Lu, Y.-C., Xu, Z.C., Gasteiger, H.A., et al. (2010) Platinum-Gold Nanoparticles: A Highly Active Bifunctional Elec- trocatalyst for Rechargeable Lithium-Air Batteries. Journal of the American Chemical Society, 132, 12170-12171. http://dx.doi.org/10.1021/ja1036572
|
[12]
|
Zhang, S.S., Foster, D. and Read, J. (2010) Discharge Characteristic of a Non-Aqueous Electrolyte Li/O2 Battery. Journal of Power Sources, 195, 1235-1240. http://dx.doi.org/10.1016/j.jpowsour.2009.08.088
|
[13]
|
Zhang, G.Q., Zheng, J.P., Liang, R., et al. (2010) Lithium-Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes. Journal of the Electrochemical Society, 2010, 157, A953-A956. http://dx.doi.org/10.1149/1.3446852
|
[14]
|
Cheng, H. and Scott, K. (2010) Carbon-Supported Manganese Oxide Nanocatalysts for Rechargeable Lithium-Air Batteries. Journal of Power Sources, 195, 1370-1374. http://dx.doi.org/10.1016/j.jpowsour.2009.09.030
|
[15]
|
Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. and Iba, H. (2010) Rechargeable Li-Air Batteries with Carbonate- Based Liquid Electrolytes. Electrochemistry, 78, 403-405. http://dx.doi.org/10.5796/electrochemistry.78.403
|
[16]
|
Lu, Y.-C., Gallant, B.M., Kwabi, D.G., et al. (2013) Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance. Energy & Environmental Science, 6, 750-768. http://dx.doi.org/10.1039/c3ee23966g
|
[17]
|
Freunberger, S.A., Chen, Y.H., Peng, Z.Q., Griffin, J.M., Hardwick, L.J., Bardé, F., et al. (2011) Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes. Journal of the American Chemical Society, 133, 8040-8047. http://dx.doi.org/10.1021/ja2021747
|
[18]
|
Trahan, M.J., Mukerjee, S., Plichta, E.J. Hendrickson M.A. and Abraham, K.M. (2013) Cobalt Phthalocyanine Cata- lyzed Lithium-Air Batteries. Journal of the Electrochemical Society, 160, A1577-A1586. http://dx.doi.org/10.1149/2.118309jes
|
[19]
|
Chen, Y., Freunberger, S.A., Peng, Z., Bardé, F. and Bruce, P.G. (2012) Li-O2 Battery with a Dimethylformamide Electrolyte. Journal of the American Chemical Society, 134, 7952-7957. http://dx.doi.org/10.1021/ja302178w
|
[20]
|
Xu, K. (2004) Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 104, 4303- 4418. http://dx.doi.org/10.1021/cr030203g
|
[21]
|
Xu, W., Xu, K., Viswanathan, V.V., Towne, S.A., Hardy, J.S., Xiao, J., et al. (2011) Reaction Mechanisms for the Limited Reversibility of Li-O2 Chemistry in Organic Carbonate Electrolytes. Journal of Power Sources, 196, 9631- 9639. http://dx.doi.org/10.1016/j.jpowsour.2011.06.099
|
[22]
|
Xiao, J., Hu, J., Wang, D., Hu, D.H., Xu, W., Graff, G.L., et al. (2011) Investigation of the Rechargeability of Li-O2 Batteries in Non-Aqueous Electrolyte. Journal of Power Sources, 196, 5674-5678. http://dx.doi.org/10.1016/j.jpowsour.2011.02.060
|
[23]
|
Veith, G.M., Dudney, N.J., Howe, J. and Nanda, J. (2011) Spectroscopic Characterization of Solid Discharge Products in Li-Air Cells with Aprotic Carbonate Electrolytes. Journal of Physical Chemistry C, 115, 14325-14333.
|
[24]
|
McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G. and Luntz, A.C. (2011) Solvents’ Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. Journal of Physical Chemistry Letters, 2, 1161-1166. http://dx.doi.org/10.1021/jz200352v
|
[25]
|
Freunberger, S.A., Chen, Y., Drewett, N.E., Hardwick, L.J., Bardé, F. and Bruce, P.G. (2011) The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angewandte Chemie International Edition, 50, 8609-8613. http://dx.doi.org/10.1002/anie.201102357
|
[26]
|
Bryantsev, V.S. and Faglioni, F. (2012) Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li-Air Batteries. Journal of Physical Chemistry A, 116, 7128-7138. http://dx.doi.org/10.1021/jp301537w
|
[27]
|
Laoire, C.O., Mukerjee, S. and Abraham, K.M. (2010) Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery. Journal of Physical Chemistry C, 114, 9178-9186. http://dx.doi.org/10.1021/jp102019y
|
[28]
|
Xu, D., Wang, Z., Xu, J., Zhang, L.L. and Zhang, X.B. (2012) Novel DMSO-Based Electrolyte for High Performance Rechargeable Li-O2 Batteries. Chemical Communications, 48, 6948-6950. http://dx.doi.org/10.1039/c2cc32844e
|
[29]
|
Peng, Z., Freunberger, S.A., Chen, Y. and Bruce, P.G. (2012) A Reversible and Higher-Rate Li-O2 Battery. Science, 337, 563-566. http://dx.doi.org/10.1126/science.1223985
|
[30]
|
Zhang, Z., Lu, J., Assary, R.S., Du, P., Wang, H.H., Sun, Y.K., et al. (2011) Increased Stability toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes. Journal of Physical Chemistry C, 115, 25535-25542. http://dx.doi.org/10.1021/jp2087412
|
[31]
|
Li, F.J., Zhang, T. and Zhou, H.S. (2013) Challenges of Non-Aqueous Li-O2 Batteries: Electrolytes, Catalysts, and Anodes. Energy & Environmental Science, 6, 1125-1141. http://dx.doi.org/10.1039/c3ee00053b
|
[32]
|
Younesi, R., Hahlin, M., Bjorefors, F., Johansson, P. and Edstrom, K. (2012) Li-O2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study. Chemistry of Materials, 25, 77-84. http://dx.doi.org/10.1021/cm303226g
|
[33]
|
Veith, G.M., Nanda, J., Delmau, L.H. and Dudney, N.J. (2012) Influence of Lithium Salts on the Discharge Chemistry of Li-Air Cells. Journal of Physical Chemistry Letters, 3, 1242-1247. http://dx.doi.org/10.1021/jz300430s
|
[34]
|
Xu, W., Hu, J.Z., Engelhard, M.H., Towne, S.A., Hardy, J.S., Xiao, J., et al. (2012) The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries. Journal of Power Sources, 215, 240-247. http://dx.doi.org/10.1016/j.jpowsour.2012.05.021
|
[35]
|
Suo, L., Hu, Y.S., Li, H., Armand, M. and Chen, L. (2013) A New Class of Solvent-in-Salt Electrolyte for High- Energy Rechargeable Metallic Lithium Batteries. Nature Communications, 4, 1-9. http://dx.doi.org/10.1038/ncomms2513
|
[36]
|
Wang, Z.L., Xu, D., Xu, J.J. and Zhang, X.B. (2014) Oxygen Electrocatalysts in Metal-Air Batteries: From Aqueous to Nonaqueous Electrolytes. Chemical Society Reviews, 43, 7746-7786. http://dx.doi.org/10.1039/C3CS60248F
|
[37]
|
Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J. and Chen, L.Q. (2008) New Electrolytes Using Li2O or Li2O2 Oxides and Tris(pentafluorophenyl) Borane as Boron Based Anion Receptor for Lithium Batteries. Electrochemistry Communications, 10, 1195-1197. http://dx.doi.org/10.1016/j.elecom.2008.05.043
|
[38]
|
Wang, Y., Zheng, D., Yang, X.Q. and Qu, D.Y. (2011) High Rate Oxygen Reduction in Non-Aqueous Electrolyte with the Addition of Perfluorinated Additives. Energy & Environmental Science, 4, 3697-3702.
|
[39]
|
Zhang, S. and Read, J. (2011) Partially Fluorinated Solvent as a Co-Solvent for the Non-Aqueous Electrolyte of Li/Air Battery. Journal of Power Sources, 196, 2867-2870. http://dx.doi.org/10.1016/j.jpowsour.2010.11.021
|
[40]
|
Mizuno, F., Nakanishi, S., Shirasawa, A., Takechi, K., Shiga, T., Nishikoori, H. and Iba, H. (2014) Design of Non- Aqueous Liquid Electrolytes for Rechargeable Li-O2 Batteries. Electrochemistry, 79, 876-881. http://dx.doi.org/10.5796/electrochemistry.79.876
|
[41]
|
Herranz, J., Garsuch, A. and Gasteiger, H.A. (2012) Using Rotating Ring Disc Electrode Voltammetry to Quantify the Superoxide Radical Stability of Aprotic Li-Air Battery Electrolytes. Journal of Physical Chemistry C, 116, 19084-19094. http://dx.doi.org/10.1021/jp304277z
|
[42]
|
Li, F.J., Kitaura, H. and Zhou, H.S. (2013) The Pursuit of Rechargeable Solid-State Li-Air Batteries. Energy & Environmental Science, 6, 2302-2311. http://dx.doi.org/10.1039/c3ee40702k
|
[43]
|
Croce, F., Appetecchi, G.B., Persi, L. and Scrosati, B. (1998) Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature, 394, 456-458. http://dx.doi.org/10.1038/28818
|
[44]
|
Kumar, J. and Kumar, B. (2009) Development of Membranes and a Study of Their Interfaces for Rechargeable Lithium-Air Battery. Journal of Power Sources, 194, 1113-1119. http://dx.doi.org/10.1016/j.jpowsour.2009.06.020
|