Theoretical Calculation of the Low-Lying Electronic States of the Molecule BaS


Complete Active Space Self Consistent Field (CASSCF) with Multireference Configuration Interaction (MRCI) and Rayleigh-Schrodinger Perturbation Theory (RSPT2-RS2) methods have been used to investigate the potential energy curves for the 12 low-lying singlet and triplet electronic states in the representation 2s+1Λ(+/-) of the molecule BaS with Davidson corrections. The harmonic frequency we, the internuclear distance Re, the electronic energy with respect to the ground state Te, the rotational constants Be and the permanent dipole moment have been calculated for these electronic states. The eigenvalues Ev, the rotational constants Bv, the centrifugal distortion constant Dv and the abscissas of the turning points Rmin and Rmax have been investigated using the canonical functions approach. Nine new electronic states have been investigated here for the first time. The comparison between the values of the present work and those available in the literature for several electronic states shows a good agreement.

Share and Cite:

Shawa, S. , Korek, M. , Younes, G. and El-Kork, N. (2015) Theoretical Calculation of the Low-Lying Electronic States of the Molecule BaS. Journal of Modern Physics, 6, 610-621. doi: 10.4236/jmp.2015.65066.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Kretzschmar, I., Schroder, D., Schwarz, H. and Armentrout, P.B. (2003) International Journal of Mass Spectrometry, 228, 439-456.
[2] Armentrout, P.B., Kretzschmar, I., Schroder, D. and Schwarz, H. (2001) International Journal of Mass Spectrometry, 210/211, 283-301.
[3] Takano, S., Yamamoto, S. and Saito, S. (1989) Chemical Physics Letters, 159, 563-566.
[4] Halfen, D.T., Apponi, A.J., M.Thompsen, J. and Ziurys, L.M. (2001) Journal of Chemical Physics, 115, 11131-11138.
[5] Bernard, D.J., Slafer, W.D., Love, P.J. and Lee, P.H. (1977) Applied Optics, 16, 2108-2115.
[6] Field, R.W., Jones, C.R. and Broida, H.P. (1974) Journal of Chemical Physics, 60, 4377-4382.
[7] Sutton, D.G. and Suchard, S.N. (1975) Applied Optics, 14, 1898-1910.
[8] Licetus, F. (2012) Litheosphorus Sive De Lapide Bononiensi Utini: Ex typographia Nicolai Schiratti Bologna. University Library of Bologna, Italy, 1640.
[9] Tiemann, E., Ryzlewicz, Ch. and Torring, T. (1976) Zeitschrift fur Naturforschung Section A—Journal of Physical Sciences, 31, 128-130.
[10] Melendres, C.A., Hebert, A.J. and Street Jr., K. (1969) Journal of Chemical Physics, 51, 855-856.
[11] Clements, R.M. and Barrow, R.F. (1968) Chemical Communications (London), 1408a.
[12] Helms, D.A., Winnewisser, M. and Winnewisser, G. (1980) Journal of Physical Chemistry, 84, 1758-1765.
[13] Janczyk, A. and Ziury, L.M. (2005) Journal of Molecular Spectroscopy, 236, 11-15.
[14] Li, G., Wang, J.G. and Bernath, P.F. (2012) Journal of Molecular Spectroscopy, 271, 10-14.
[15] Morbi, Z. and Bernath, P.F. (1995) Journal of Molecular Spectroscopy, 171, 210-222.
[16] Taher-Mansour, F., Allouche, A.R. and Korek, M. (2008) Journal of Molecular Spectroscopy, 248, 61-65.
[17] Korek, M., Kontar, S., Taher-Mansour, F. and Allouche, A.R. (2009) International Journal of Quantum Chemistry, 109, 236-242.
[18] Hamdan, A. and Korek, M. (2010) Chemical Physics, 369, 13-18.
[19] Hamdan, A. and Korek, M. (2011) International Journal of Quantum Chemistry, 111, 2960-2965.
[20] Fahs, H., Korek, M., Allouche, A.R. and Aubert-Frecon, M. (2004) Chemical Physics, 299, 97-103.
[21] Badreddine, K., El-Kork, N. and Korek, M. (2012) Journal of Modern Physics, 3, 839-849.
[22] Fahs, H., Korek, M., Allouche, A.R. and Aubert-Frecon, M. (2002) Journal of Chemical Physics, 117, 3715-3720.
[23] Farhat, A., Korek, M., Marques, M.A.L. and Abdul-Al, S.N. (2012) Canadian Journal of Chemistry, 90, 631-639.
[24] Korek, M., El-Kork, N., Moussa, A.N. and Bentiba, A. (2013) Journal of Chemical Physics Letters, 575, 115-121.
[25] Kobeissi, H., Korek, M. and Dagher, M. (1989) Journal of Molecular Spectroscopy, 138, 1-12.
[26] Kobeissi, H. and Korek, M. (1992) Journal of Computational Chemistry, 13, 1103-1108.
[27] Korek, M. (1999) Computer Physics Communications, 119, 169-178.
[28] Werner, H.J., Knowles, P.J., Lindh, R., Manby, F.R., Schütz, M., Celani, P., Korona, T., Rauhut, G., Amos, R.D., Bernhardsson, A., Berning, A., Cooper, D.L., Deegan, M.J.O., Dobbyn, A.J., Eckert, F., Hampel, C., Hetzer, G., Lloyd, A.W., McNicholas, S.J., Meyer, W., Mura, M.E., Nicklaß, A., Palmieri, P., Pitzer, R., Schumann, U., Stoll, H., Stone, A.J., Tarroni, R. and Thorsteinsson, T. (2009) MOLPRO Is a Package of ab initio Programs.
[29] Allouche, A.R. (2011) Journal of Computational Chemistry, 32, 174-182.
[30] Tesch, C.M., Kurtz, L. and de Vivie-Riedle, R. (2001) Chemical Physics Letters, 343, 633-641.
[31] Mishima, K., Tokumo, K. and Yamashita, K. (2008) Chemical Physics, 343, 61-75.
[32] Zhao, M. and Babikov, D. (2006) Journal of Chemical Physics, 125, 24105-24111.
[33] Barrow, R.F., Burton, W.G. and Jones, P.A. (1970) Physical Chemistry Laboratory, Oxford University.
[34] Cummins, P.G., Eield, R.W. and Renhorn, I. (1981) Journal of Molecular Spectroscopy, 90, 327-352.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.