An Optical Fiber Sensor Probe Using a PMMA/CPR Coated Bent Optical Fiber as a Transducer for Monitoring Trace Ammonia
Yu Huang, Shiquan Tao
DOI: 10.4236/jst.2011.12005   PDF   HTML     6,700 Downloads   14,470 Views   Citations


Ammonia sensors have broad spectrum of applications for industrial process control as well as for environ-mental monitoring. An optical fiber ammonia sensor probe has been developed by using a bent optical fiber having dual poly(methyl methacrylate) (PMMA)/chlorophenol red (CPR) coatings as a transducer. This sen-sor probe was tested for monitoring trace ammonia in gas samples using air as sample matrix. The reaction of ammonia with CPR causes a color change of the reagent, which was detected by using fiber optic evanes-cent wave absorption spectrometry as a sensing signal. By adopting a dual layer coating structure, the sensor probe has faster response compared to a sensor using a broadly accepted sensing reagent-immobilized poly-mer coating structure. The sensor developed in this work is sensitive, has a detection limit of 2.7 ppb NH3 in air, which is the most sensitive among the reported optical fiber ammonia sensors to the best knowledge of the authors. The sensor is also reversible and has a response time of 25 minutes. The features of high sensi-tivity, reversibility and reasonable response time make this sensor technique very attractive for air quality monitoring.

Share and Cite:

Y. Huang and S. Tao, "An Optical Fiber Sensor Probe Using a PMMA/CPR Coated Bent Optical Fiber as a Transducer for Monitoring Trace Ammonia," Journal of Sensor Technology, Vol. 1 No. 2, 2011, pp. 29-35. doi: 10.4236/jst.2011.12005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. O. Bash, J. T. Walker, G. G. Katul, M. R. Jones, E. Nemitz and W. P. Robarge, “Estimation of in-Canopy Ammonia Sources and Sinks in a Fertilized Zea mays Field,” Environmental Science and Technology, Vol. 44, No. 5, 2010, pp. 1683-1689. doi:10.1021/es9037269
[2] T. Nyord, K. M. Schelde, H. T. Sogaard, L. S. Jensen and S. G. Sommer, “A Simple Model for Assessing Ammonia Emission from Ammoniacal Fertilizers as Affected by pH and Injection into Soil,” Atmospheric Environment, Vol. 42, No. 19, 2008, pp. 4656-4664. doi:10.1016/j.atmosenv.2008.01.051
[3] S. M. McGinn, T. K. Flesch, B. P. Crenna, K. A. Beauchemin and T. Coates, “Quantifying Ammonia Emissions from a Cattle Feedlot Using a Dispersion Model,” Journal of Environmental Quality, Vol. 36, No. 6, 2007, pp. 1585-1590. doi:10.2134/jeq2007.0167
[4] R. W. Todd, N. A. Cole, L. A. Harper, T. K. Flesch and B. H. Baek, “Ammonia and Gaseous Nitrogen Emissions from a Commercial Beef Cattle Feedyard Estimated Using The Flux-Gradient Method and N:P Ratio Analysis,” Proceedings of State of the Science: Animal Manure and Waste Management, San Antonio, 4-7 January 2005, pp. 1-8.
[5] M. B. Rhoades, B. W. Auvermann, N. A. Cole, R. W. Todd, D. B. Parker, E. A. Caraway, G. Schuster and J. Spears, “Ammonia Concentration and Modeled Emission Rates from a Beef Cattle Feedyard,” Proceedings of 2008 ASABE Annual International Meeting, Providence, 29 June-2 July 2008.
[6] C. M. Wathes, M. R. Holden, R. W. Sneath, R. P. White and V. R. Phillips, “Concentrations and Emission Rates of Aerial Ammonia, Nitrous Oxide, Methane, Carbon Dioxide, Dust and Endotoxin in UK Broiler and Layer Houses,” British poultry science, Vol. 38, No. 1, 1997, pp. 14-28. doi:10.1080/00071669708417936
[7] E. F. Wheeler, K. D. Casey, J. S. Zajaczkowski, P. A. Topper, R. S. Gates, H. Xin, Y. Liang and A. Tanaka, “Ammonia Emission from U.S. Poultry Houses: Part III-Broiler Houses,” Proceedings of the 3rd International Conference on Air Pollution from Agricultural Operations, Research Triangle Park, 12-15 October 2003, pp. 159-166.
[8] V. V. Malyshev and A. V. Pislyakov, “Dynamic Properties and Sensitivity of Semiconductor Metal-Oxide Thick-Film Sensors to Various Gases in Air Gaseous Medium,” Sensors and Actuators B: Chemical, Vol. 96, No. 1-2, 2003, pp. 413-434. doi:10.1016/S0925-4005(03)00579-3
[9] B. T. Marquis and J. F. Vetelino, “A Semiconducting Metal Oxide Sensor Array for the Detection of NOx and NH3,” Sensors and Actuators B: Chemical, Vol. 77, No. 1-2, 2001, pp. 100-110. doi:10.1016/S0925-4005(01)00680-3
[10] V. Romanovskaya, M. Ivanovskaya and P. Bogdanov, “A Study of Sensing Properties of Pt- and Au-Loaded In2O3 Ceramics,” Sensors and Actuators B: Chemical, Vol. 56, No. 1-2, 1999, pp. 31-36. doi:10.1016/S0925-4005(99)00018-0
[11] K. Chen, Y, Xu, H. Zhang, L. Nie and S. Yao, “Novel Surface Acoustic Wave-Interdigitated Array Electrode Gas Sensor for Dissolved Ammonia,” Fresenius’ Journal of Analytical Chemistry, Vol. 357, No. 4, 1997, pp. 379- 383.
[12] O. K. Varghese, D. Gong, W. R. Dreschel, K. G. Ong, G. Keat and C. A. Grimes, “Ammonia Detection Using Nanoporous Alumina Resistive and Surface Acoustic Wave Sensors,” Sensors and Actuators B: Chemical, Vol. 94, No. 1, 2003, pp. 27-35. doi:10.1016/S0925-4005(03)00252-1
[13] C. Shen, C. Huang and H. Chuo, “The Improved Ammonia Gas Sensors Constructed by L-Glutamic Acid Hydrochloride on Surface Acoustic Wave Devices,” Sensors and Actuators B: Chemical, Vol. 84, No. 2-3, 2002, pp. 231-236. doi:10.1016/S0925-4005(02)00030-8
[14] C. Shen, C. Hsu, R. Hwang and J. Jeng, “The Interference of Humidity on a Shear Horizontal Surface Acoustic Wave Ammonia Sensor,” Sensors and Actuators B: Chemical, Vol. 122, No. 2, 2007, pp. 457-460. doi:10.1016/j.snb.2006.06.017
[15] C. Shen, R. Chen, Y. Shen, L. Wu, C. Huang and J. Jeng, “An Improved System Based on Surface Acoustic Wave Sensors for Reliable Measurement,” Chemical Sensors, Vol. 20, Supplement B, 2004, pp. 266-.
[16] “Organic and Inorganic Gases by Extractive FTIR Spectrometry,” 2003.
[17] Z. Loh, D. Chen, M. Bai, T. Naylor, D. Griffith, J. Hill, T. Denmead, S. McGinn and R. Edis, “Measurement of Greenhouse Gas Emissions From Australian Feedlot Beef Production Using Open-Path Spectroscopy and Atmospheric Dispersion Modeling,” Australian Journal of Experimental Agriculture, Vol. 48, No. 2, 2008, pp. 244-247. doi:10.1071/EA07244
[18] E. D. Thoma, R. C. Shores, E. L. Thompson, D. B. Harris, S. A. Thorneloe, R. M. Varma, R. A. Hashmonay, M. T. Modrak, D. F. Natschke and H. A .Gamble, “Open-Path Tunable Diode Laser Absorption Spectroscopy for Acquisition of Fugitive Emission Flux Data,” Journal of the Air & Waste Management Association, Vol. 55, No. 5, 2005, pp. 658-668.
[19] J. Wang, P. Xie, A. Li, F. Si, K. Dou, W. Fang, F. Wu, Y. Jiang and M. Qin, “Advanced Sensor Systems and Applications IV,” Proceedings of SPIE-The International Society for Optical Engineering, Beijing, 18-20 October 2010, pp. 1-11.
[20] S. Tao, J. C. Fanguy and L. Xu, “Optical Fiber Ammonia Sensing Probes Using Reagent Immobilized Porous Silica Coating as Transducers,” Sensors and Actuators B: Che- mical, Vol. 115, No. 1, 2006, pp. 158-163. doi:10.1016/j.snb.2005.08.034
[21] S. Tao, “Fiber Optic Chemical Sensors for Environmental Monitoring,” In: C. A. Grimes, E. C. Dickey and M. V. Pishko, Eds., Encyclopedia of Sensors, Vol. 3, American Scientific Publishers, Stevenson Ranch, 2006, pp. 449-.
[22] M. El-Sherif, “Fiber-Optic Chemical and Biosensors,” Springer Series on Chemical Sensors and Biosensors, Springer, 2010.
[23] H. Guo and S. Tao, “Silver Nanoparticles Doped Silicate Nanocomposites Coated on an Optical Fiber for Ammonia sensing,” Sensors and Actuators B: Chemical, Vol. 123, No. 1, 2007, pp. 578-582. doi:10.1016/j.snb.2006.09.055
[24] S. Tao, S. Gong, J. C. Fanguy and X. Hu, “The Application of a Light Guiding Flexible Tubular Waveguide in Evanescent Wave Absorption Optical Sensing,” Sensors and Actuators B: Chemical, Vol. 120, No. 2, 2007, pp. 724-731. doi:10.1016/j.snb.2006.03.039
[25] E. Scorsone, S. Christie, K. C. Persaud, P. Simon and F. Kvasnik, “Fiber-Optic Evanescent Sensing of Gaseous Ammonia with Two Forms of a New Near-Infrared Dye in Comparison to Phenol Red,” Sensors and Actuators B: Chemical, Vol. 90, No. 1-3, 2003, pp. 37-45. doi:10.1016/S0925-4005(03)00019-4
[26] R. W. Sabnis, “Handbook of Acid-Base Indicators,” CRC Press, Boca Raton, 2008.
[27] M. J. Aernecke and D. R. Walt, “Optical-Fiber Arrays for Vapor Sensing,” Sensors and Actuators B: Chemical, Vol. 142, No. 2, 2009, pp. 464-469. doi:10.1016/j.snb.2009.06.054
[28] S. Tao and H. Guo, “Optical Fiber Chemical Sensors for Gas Detection” In: R. V. Harrison, Ed., Chemical Sensors: Properties, Performance and Applications, Nova Science Publishers, Inc., Hauppauge, 2010, pp. 69-92.
[29] D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, “Fundamentals of Analytical Chemistry,” 8th Edition, Thomson Learning Inc., Glendale, 2004, pp. 194-206.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.