[1]
|
Fitts, R.H., Romatowski, J.G., Blaser, C., De La Cruz, L., Gettelman, G.J. and Widrick, J.J. (2000) Effect of Spaceflight on the Isotonic Contractile Properties of Single Skeletal Muscle Fibers in the Rhesus Monkey. Journal of Gravitational Physiology, 7, S53-S54.
|
[2]
|
Marshall, J.M. and Tandon, H.C. (1984) Direct Observations of Muscle Arterioles and Venules Following Contraction of Skeletal Muscle Fibres in the Rat. Journal of Physiology, 350, 447-459. http://dx.doi.org/10.1113/jphysiol.1984.sp015211
|
[3]
|
Bruns, A.F., Bao, L., Walker, J.H. and Ponnambalam, S. (2009) EGF-A-Stimulated Signalling in Endothelial Cells via a Dual Receptor Tyrosine Kinase System Is Dependent on Co-Ordinated Trafficking and Proteolysis. Biochemical Society Transactions, 37, 1193-1197. http://dx.doi.org/10.1113/jphysiol.1984.sp015211
|
[4]
|
Prelle, K., Wobus, A.M., Krebs, O., Blum, W.F. and Wolf, E. (2000) Overexpression of Insulin-Like Growth Factor-II in Mouse Embryonic Stem Cells Promotes Myogenic Differentiation. Biochemical and Biophysical Research Communications, 277, 631-638. http://dx.doi.org/10.1113/jphysiol.1984.sp015211
|
[5]
|
Rosen, K.M., Wentworth, B.M., Rosenthal, N. and Vil-la-Komaroff, L. (1993) Specific, Temporally Regulated Expression of the Insulin-Like Growth Factor II Gene During Muscle Cell Differentiation. Endocrinology, 133, 474-481. http://dx.doi.org/10.1210/en.133.2.474
|
[6]
|
Hirashima, M., Ogawa, M., Nishikawa, S., Matsumura, K., Kawasaki, K., Shibuya, M. and Nishikawa, S. (2003) A Chemically Defined Culture of VEGFR2+ Cells Derived from Embryonic Stem Cells Reveals the Role of VEGFR1 in Tuning the Threshold for VEGF in Developing Endothelial Cells. Blood, 101, 2261-2267. http://dx.doi.org/10.1182/blood-2002-01-0003
|
[7]
|
Nielsena, S. and Pedersena, B.K. (2008) Skeletal Muscle as an Immunogenic Organ. Current Opinion in Pharmacology, 8, 346-351. http://dx.doi.org/10.1016/j.coph.2008.02.005
|
[8]
|
Hanwei, H. and Zhao, H. (2010) FYN-Dependent Muscle-Immune Interaction after Sciatic Nerve Injury. Muscle & Nerve, 42, 70-77. http://dx.doi.org/10.1002/mus.21605
|
[9]
|
Zhao, H. and Huang, H. (2012) Functional Capability of IL-15-Akt Signaling in the Denervated Muscle. Cytokine, 60, 608-615. http://dx.doi.org/10.1016/j.cyto.2012.08.026
|
[10]
|
Zhao, H., Huang, H.W., Wu, J.G. and Huang, P.Y. (2013) Specialization of Mitochondrial and Vascular Oxidant Modulated VEGFR in the Denervated Skeletal Muscle. Cell Signal, 25, 2106-2114. http://dx.doi.org/10.1016/j.cellsig.2013.06.014
|
[11]
|
McGarrigle, D. and Huang, X.Y. (2007) GPCRs Signaling Directly through Src-Family Kinases. Science Signaling, 2007, pe35. http://dx.doi.org/10.1126/stke.3922007pe35
|
[12]
|
Zhao, H., Wu, G. and Cao, X. (2013) EGFR Dependent Subcellular Communication Was Responsible for Morphine Mediated AC Superactivation. Cellular Signalling, 25, 417-428. http://dx.doi.org/10.1016/j.cellsig.2012.10.016
|
[13]
|
Slessareva, J.E., Routt, S.M., Temple, B., Bankaitis, V.A. and Dohlman, H.G. (2006) Activation of the Phosphatidylinositol 3-Kinase Vps34 by a G Protein Alpha Subunit at the Endosome. Cell, 126, 191-203. http://dx.doi.org/10.1016/j.cell.2006.04.045
|
[14]
|
Hunyady, L., Baukal, A.J., Gaborik, Z., Olivares-Reyes, J.A., Bor, M., Szaszak, M., Lodge, R., Catt, K.J. and Balla, T. (2002) Differential PI 3-Kinase Dependence of Early and Late Phases of Recycling of the Internalized AT1 Angiotensin Receptor. Journal of Cell Biology, 157, 1211-1222. http://dx.doi.org/10.1083/jcb.200111013
|
[15]
|
Houle, S. and Marceau, F. (2003) Wortmannin Alters the Intracellular Trafficking of the Bradykinin B2 Receptor: Role of Phosphoinositide 3-Kinase and Rab5. Biochemical Journal, 375, 151-158. http://dx.doi.org/10.1042/BJ20030872
|
[16]
|
Kalia, M., Kumari, S., Chadda, R., Hill, M.M., Parton, R.G. and Mayor, S. (2006) Arf6-Independent GPI-Anchored Protein-Enriched Early Endosomal Compartments Fuse with Sorting Endosomes via a Rab5/phosphatidy-linositol-3'- kinase-Dependent Machinery. Molecular Biology of the Cell, 17, 3689-3704. http://dx.doi.org/10.1091/mbc.E05-10-0980
|
[17]
|
Riek, R.P., Handschumacher, M.D., Sung, S.S., Tan, M., Glynias, M.J., Schluchter, M.D., Novotny, J. and Graham, R.M. (1995) Evolutionary Conservation of both the Hydrophilic and Hydrophobic Nature of Transmembrane Residues. Journal of Theoretical Biology, 172, 245-258. http://dx.doi.org/10.1006/jtbi.1995.0021
|
[18]
|
Hynes, T.R., Tang, L., Mervine, S.M., Sabo, J.L., Yost, E.A., Devreotes, P.N. and Berlot, C.H. (2004) Visualization of G Protein βγ Dimers Using Bimolecular Fluorescence Complementation Demonstrates Roles for Both β and γ in Subcellular Targeting. Journal of Biological Chemistry, 279, 30279-30286. http://dx.doi.org/10.1074/jbc.M401432200
|
[19]
|
Hynes, T.R., Mervine, S.M., Yost, E.A., Sabo, J.L. and Berlot, C.H. (2004) Live Cell Imaging of Gs and the β2-Adrenergic Receptor Demonstrates that Both Alphas and β1γ7 Internalize upon Stimulation and Exhibit Similar Trafficking Patterns That Differ from that of the β2-Adrenergic Receptor. Journal of Biological Chemistry, 279, 44101-44112. http://dx.doi.org/10.1074/jbc.M405151200
|
[20]
|
Saini, D.K., Kalyanaraman, V., Chisari, M. and Gautam, N. (2007) A Family of G Protein βγ Subunits Translocate Reversibly from the Plasma Membrane to Endomembranes on Receptor Activation. Journal of Biological Chemistry, 282, 24099-24108. http://dx.doi.org/10.1074/jbc.M701191200
|
[21]
|
Jamora, C., Yamanouye, N., Van Lint, J., Laudenslager, J., Vandenheede, J.R., Faulkner, D.J. and Malhotra, V. (1999) Gβγ-Mediated Regulation of Golgi Organization Is through the Direct Activation of Protein Kinase D. Cell, 98, 59-68. http://dx.doi.org/10.1016/S0092-8674(00)80606-6
|
[22]
|
Díaz Anel, A.M. and Malhotra, V. (2005) PKCη Is Required for β1γ2/β3γ2- and PKD-Mediated Transport to the Cell Surface and the Organization of the Golgi apparatus. Journal of Cell Biology, 169, 83-91. http://dx.doi.org/10.1083/jcb.200412089
|
[23]
|
Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. and Zerial, M. (2000) Distinct Membrane Domains on Endosomes in the Recycling Pathway Visualized by Multicolor Imaging of Rab4, Rab5, and Rab11. Journal of Cell Biology, 149, 901-914. http://dx.doi.org/10.1083/jcb.149.4.901
|
[24]
|
Zerial, M. and McBride, H. (2001) Rab Proteins as Membrane Organizers. Nature Reviews Molecular Cell Biology, 2, 107-117. http://dx.doi.org/10.1038/35052055
|
[25]
|
Miaczynska, M. and Zerial, M. (2002) Mosaic Organization of the Endocytic Pathway. Experimental Cell Research, 272, 8-14. http://dx.doi.org/10.1006/excr.2001.5401
|
[26]
|
Deldicque, L. (2013) Endoplasmic Reticulum Stress in Human Skeletal Muscle: Any Contribution to Sarcopenia? Frontiers in Physiology, 4, 236. http://dx.doi.org/10.3389/fphys.2013.00236
|
[27]
|
Veeranki, S. and Tyagi, S.C. (2013) Defective Homocysteine Metabolism: Potential Implications for Skeletal Muscle Malfunction. International Journal of Molecular Sciences, 14, 15074-15091. http://dx.doi.org/10.3390/ijms140715074
|
[28]
|
Anderie, I., Schulz, I. and Schmid, A. (2007) Direct Interaction between ER Membrane-Bound PTP1B and Its Plasma Membrane-Anchored Targets. Cellular Signalling, 19, 582-592. http://dx.doi.org/10.1016/j.cellsig.2006.08.007
|
[29]
|
Frangioni, J.V., Beahm, P.H., Shifrin, V., Jost, C.A. and Neel, B.G. (1992) The Nontransmembrane Tyrosine Phosphatase PTP-1B Localizes to the Endoplasmic Reticulum via Its 35 Amino Acid C-Terminal Sequence. Cell, 68, 545-560. http://dx.doi.org/10.1016/0092-8674(92)90190-N
|
[30]
|
Frangioni, J.V., Oda, A., Smith, M., Salzman, E.W. and Neel, B.G. (1993) Calpain-Catalyzed Cleavage and Subcellular Relocation of Protein Phosphotyrosine Phosphatase 1B (PTP-1B) in Human Platelets. EMBO Journal, 12, 4843-4856.
|
[31]
|
Haj, F.G., Verveer, P.J., Squire, A., Neel, B.G. and Bastiaens, P.I. (2002) Imaging Sites of Receptor Dephosphorylation by PTP1B on the Surface of the Endoplasmic Reticulum. Science, 295, 1708-1711. http://dx.doi.org/10.1126/science.1067566
|
[32]
|
Hernandez, M.V., Sala, M.G., Balsamo, J., Lilien, J. and Arregui, C.O. (2006) ER-Bound PTP1B Is Targeted to Newly Forming Cell-Matrix Adhesions. Journal of Cell Science, 119, 1233-1243. http://dx.doi.org/10.1242/jcs.02846
|
[33]
|
Lorenzen, J.A., Dadabay, C.Y. and Fischer, E.H. (1995) COOH-Terminal Sequence Motifs Target the T Cell Protein Tyrosine Phosphatase to the ER and Nucleus. Journal of Cell Biology, 131, 631-643. http://dx.doi.org/10.1083/jcb.131.3.631
|
[34]
|
Li, S., Depetris, R.S., Barford, D., Chernoff, J. and Hubbard, S.R. (2005) Crystal Structure of a Complex between Protein Tyrosine Phosphatase 1B and the Insulin Receptor Tyrosine Kinase. Structure, 13, 1643-1651. http://dx.doi.org/10.1016/j.str.2005.07.019
|
[35]
|
Tonks, N.K. (2003) PTP1B: From the Sidelines to the Front Lines! FEBS Letters, 546, 140-148. http://dx.doi.org/10.1016/S0014-5793(03)00603-3
|
[36]
|
Gambardella, L. and Vermeren, S. (2013) Molecular Players in Neutrophil Chemotaxis—Focus on PI3K and Small GTPases. Journal of Leukocyte Biology, 94, 603-612. http://dx.doi.org/10.1189/jlb.1112564
|
[37]
|
Hanna, S. and El-Sibai, M. (2013) Signaling Networks of Rho GTPases in Cell Motility. Cellular Signalling, 25, 1955-1961. http://dx.doi.org/10.1016/j.cellsig.2013.04.009
|
[38]
|
Chua, C.E. and Tang, B.L. (2013) Linking Membrane Dynamics and Trafficking to Autophagy and the Unfolded Protein Response. Journal of Cellular Physiology, 228, 1638-1640. http://dx.doi.org/10.1002/jcp.24341
|
[39]
|
Liu, S. and Storrie, B. (2012) Are Rab Proteins the Link between Golgi Organization and Membrane Trafficking? Cellular and Molecular Life Sciences, 69, 4093-4106. http://dx.doi.org/10.1007/s00018-012-1021-6
|
[40]
|
Martinez, O. and Goud, B. (1998) Rab Proteins. Biochimica et Biophysica Acta, 1404, 101-112. http://dx.doi.org/10.1016/S0167-4889(98)00050-0
|
[41]
|
Goud, B. and McCaffrey, M. (1991) Small GTP-Binding Proteins and Their Role in Transport. Current Opinion in Cell Biology, 3, 626-633. http://dx.doi.org/10.1016/0955-0674(91)90033-U
|
[42]
|
Punga, A.R., Maj, M., Lin, S., Meinen, S. and Ruegg, M.A. (2011) MuSK Levels Differ between Adult Skeletal Muscles and Influence Postsynaptic Plasticity. European Journal of Neuroscience, 33, 890-898. http://dx.doi.org/10.1111/j.1460-9568.2010.07569.x
|
[43]
|
Rivas-Plata, K.A., Kraas, J.R., Saleh, S.M. and Swope, S.L. (2001) Src-Class Kinases Act within the Agrin/MuSK Pathway to Regulate Acetylcholine Receptor Phosphorylation, Cytoskeletal Anchoring, and Clustering. Journal of Neuroscience, 21, 3806-3818.
|
[44]
|
Smith, C.L., Mittaud, P., Prescott, E.D., Fuhrer, C. and Burden, S.J. (2001) Src, Fyn, and Yes Are Not Required for Neuromuscular Synapse Formation but Are Necessary for Stabilization of Agrin-Induced Clusters of Acetylcholine Receptors. Journal of Neuroscience, 21, 3151-3160.
|
[45]
|
Wang, Q., Zhang, B., Wang, Y.E., Xiong, W.C. and Mei, L. (2008) The Ig1/2 Domain of MuSK Binds to Muscle Surface and Is Involved in Acetylcholine Receptor Clustering. Neurosignals, 16, 246-253. http://dx.doi.org/10.1159/000111567
|
[46]
|
Willmann, R., Pun, S., Stallmach, L., Sadasivam, G., Santos, A.F., Caroni, P. and Fuhrer, C. (2006) Cholesterol and Lipid Microdomains Stabilize the Postsynapse at the Neuromuscular Junction. EMBO Journal, 25, 4050-4060. http://dx.doi.org/10.1038/sj.emboj.7601288
|