Secretory Structures in Flourensia campestris and F. oolepis: Ultrastructure, Distribution, and (-)-Hamanasic Acid A Secretion
Mariana P. Silva1,2, Graciela M. Tourn1,3, Daniela López1,2, Beatriz G. Galati3, Leonardo A. Piazza1*, Gabriela Zarlavsky3, Juan J. Cantero4,5, Ana L. Scopel1,2*
1Estación de Biología Sierras, Facultad de Agronomía-Sede Punilla, Universidad de Buenos Aires, Casilda S/N, Huerta Grande, Córdoba, Argentina.
2Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
3Cátedra de Botánica Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.
4Departamento de Biología Agrícola, Facultad de Agronomía y Veterinaria, Universidad de Río Cuarto, Río Cuarto, Córdoba, Argentina.
5Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina.
DOI: 10.4236/ajps.2015.67100   PDF   HTML   XML   4,297 Downloads   5,255 Views   Citations


In this work, the localization, density, morphology and ultrastructure of secretory structures in aerial organs of Flourensia campestris (FC) and F. oolepis (FO) (Asteraceae) by means of a combination of light, fluorescence, transmission (TEM) and scanning electron microscopy (SEM) were examined. The possible role of secretory structures in the production and secretion of the phytotoxic sesquiterpene (-)-hamanasic acid A ((-)HAA) in both species was also assessed. Capitate glandular trichomes were found in all reproductive organs of FC and FO, and were being reported for the first time. These glandular trichomes, typically associated to edges and veins, were of the same type as those already described for vegetative organs, and were abundant in involucral bracts and corolla of tubulose and ligulate flowers. Their density in reproductive organs of both species was similar (ca. 30/mm2) and lower than that found in leaves (ca. 100/mm2) and stems (ca. 160/mm2 in FC, and up to 650/mm2 in FO). Glandular trichomes in vegetative organs followed a species-specific pattern of distribution. TEM and SEM observations suggest that each species differs in the way in which secretory materials are released to the outside: through cracks or pores in FC, or through a loose cuticle in FO. Similar inspections of the secretory ducts revealed lipophilic vacuoles localized in subepithelial and epithelial cells, in which secretions accumulated before being transferred to the duct. The presence of wall ingrowths in subepithelial cells suggests that granulocrine secretion operates in these species. Secretory ducts varied in density and diameter among the organs in both species, with the combination being maximal in woody stems. (-)HAA was only detected in surface secreted resins of both species, and its concentration (2D-TLC, GC-FID) was intimately associated with the distribution and density of glandular trichomes in each organ (capitula, leaves, and stems with primary or secondary growth). In addition, no (-)HAA was detected internally in the resins collected from secretory ducts. The composition of these resins showed distinctive profiles for FC and FO, and only four from ca. 30 compounds detected (GC/MS) were shared by both species. In addition to the elucidation of ultrastructural traits, distribution and density of secretory structures in aerial organs of FC and FO, present findings suggest a functional role for glandular trichomes in the secretion of the putative phytotoxic allelochemical (-)HAA.

Share and Cite:

Silva, M. , Tourn, G. , López, D. , Galati, B. , Piazza, L. , Zarlavsky, G. , Cantero, J. and Scopel, A. (2015) Secretory Structures in Flourensia campestris and F. oolepis: Ultrastructure, Distribution, and (-)-Hamanasic Acid A Secretion. American Journal of Plant Sciences, 6, 925-942. doi: 10.4236/ajps.2015.67100.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Funk, V.A., Susanna, A., Stuessy, T.F. and Robinson, H. (2009) Classification of Compositae. In: Funk, V.A., Susanna, A., Stuessy, T.F. and Bayer, R.J., Eds., Systematics, Evolution, and Biogeography of Compositae, International Association for Plant Taxonomy (IAPT), Vienna, 171-192.
[2] Simpson, B. (2009) Economic Importance of Compositae. In: Funk, V.A., Susanna, A., Stuessy, T.F. and Bayer, R.J., Eds., Systematics, Evolution, and Biogeography of Compositae, Sheridan Books, Ann Arbor, 45-58.
[3] Katinas, L., Gutiérrez, D.G., Grossi, M.A. and Crisci, J.V. (2007) Panorama de la familia Asteraceae (Compositae) en la República Argentina. Bol. Soc. Argent. Bot., 42, 113-129.
[4] Dillon, M.O. (1984) A Systematic Study of Flourensia (Asteraceae, Heliantheae). Fieldiana, Botany, New Series, 16, 1-67.
[5] Ariza Espinar, L. (2000) Familia Asteraceae. Tribu Heliantheae. Prodromo de la Flora Fanerogámica de Argentina Central, 2, 1-111.
[6] Langenheim, J.H. (2003) Plant Resins: Chemistry, Evolution, Ecology and Ethnobotany. Timber Press, Portland.
[7] Abrahim, D., Braguini, W.L., Kelmer-Bracht, A.M. and Ishii-Iwamoto, E.L. (2000) Effects of Four Monoterpenes on Germination, Primary Root Growth, and Mitochondrial Respiration of Maize. Journal of Chemical Ecology, 26, 611-624.
[8] Dayan, F.E. and Duke, S.O. (2006) Clues in the Search for New Herbicides. In: Reigosa, M.J., Pedrol, N. and González, L., Eds., Allelopathy: A Physiological Process with Ecological Implications. Springer, Dordrecht, 63-81.
[9] Romagni, J.G., Allen, S.N. and Dayan, F.E. (2000) Allelopathic Effects of Volatile Cineoles on Two Weedy Plant Species. Journal of Chemical Ecology, 26, 303-313.
[10] Silva, M.P., Piazza, L.A., López, D., López Rivilli, M.J., Turco, M.D., Cantero, J.J., Tourn, G.M. and Scopel, A.L. (2012) Phytotoxic Activity in Flourensia campestris and Isolation of (-)-Hamanasic Acid A as Its Active Principle Compound. Phytochemistry, 77, 140-148.
[11] Croteau, R.B., Davis, E.M., Ringer, K.L. and Wildung, M.R. (2005) (-)-Menthol Biosynthesis and Molecular Genetics. Naturwissenschaften, 92, 562-577.
[12] Majdi, M., Liu, Q., Karimzadeh, G., Malboobi, M.A., Beekwilder, J., Cankar, K., De Vos, R., Todorovic, S., Simonovic, A. and Bouwmeester, H. (2011) Biosynthesis and Localization of Parthenolide in Glandular Trichomes of Feverfew (Tanacetum parthenium L. Schulz Bip.). Phytochemistry, 72, 1739-1750.
[13] Urzúa, A. (2004) Mono- and Sesquiterpenes in the Trichome Secreted Exudates from Pseudognaphalium cheiranthifolium, P. heterotrichium, P. vira vira and P. robustum. Biochemical Systematics and Ecology, 32, 211-214.
[14] Wagner, G.J., Wang, E. and Shepherd, R.W. (2004) New Approaches for Studying and Exploiting an Old Protuberance, the Plant Trichome. Annals of Botany, 93, 3-11.
[15] López, D., Piazza, L.A., Silva, M.P., López Rivilli, M.J., Cantero, J.J., Tourn, G.M. and Scopel, A.L. (2014) Distribution of (–)-Hamanasic Acid A in South American Species of Flourensia and Phytotoxic Effects of Leaf Aqueous Extracts. Natural Product Communications, 9, 341-345.
[16] Mata, R., Bye, R., Linares, E., Macías, M., Rivero-Cruz, I., Pérez, O. and Timmermann, B.N. (2003) Phytotoxic Compounds from Flourensia cernua. Phytochemistry, 64, 285-291.
[17] Diaz Napal, G.N. and Palacios, S.M. (2013) Phytotoxicity of Secondary Metabolites Isolated from Flourensia oolepis S.F. Blake. Chemistry & Biodiversity, 10, 1295-1304.
[18] Palacios, S.M., Maggi, M.E., Bazán, C.M., Carpinella, M.C., Turco, M., Muñoz, A., Alonso, R.A., Nuñez, C., Cantero, J.J., Defago, M.T., Ferrayoli, C.G. and Valladares, G.R. (2007) Screening of Argentinian Plants for Pesticide Activity. Fitoterapia, 78, 580-584.
[19] Seminara, C., Bollati, L., Avalos, S., Diaz Napal, G., Palacios, S. and Defagó, M. (2014) Antifeedant and Toxic Effect of Crude Extract from Flourensia oolepis and Their Impact on Nutritional Parameters of Helicoverpa gelotopoeon. Journal of Applied Sciences and Environmental Management, 18, 577-581.
[20] Diaz Napal, G.N., Carpinella, M.C. and Palacios, S.M. (2009) Antifeedant Activity of Ethanolic Extract from Flourensia oolepis and Isolation of Pinocembrin as Its Active Principle Compound. Bioresource Technology, 100, 3669-3673.
[21] Faini, F., Labbe, C., Salgado, I. and Coll, J. (1997) Chemistry, Toxicity and Antifeedant Activity of the Resin of Flourensia thurifera. Biochemical Systematics and Ecology, 25, 189-193.
[22] García, M., Gonzalez-Coloma, A., Donadel, O.J., Ardanaz, C.E., Tonn, C.E. and Sosa, M.E. (2007) Insecticidal Effects of Flourensia oolepis Blake (Asteraceae) Essential Oil. Biochemical Systematics and Ecology, 35, 181-187.
[23] de Rodríguez, D.J., Hernández-Castillo, F.D., Solís-Gaona, S., Rodríguez-García, R. and Rodríguez-Jasso, R.M. (2012) Flourensia cernua DC: A Plant from Mexican Semiarid Regions with a Broad Spectrum of Action for Disease Control. In: Larramendy, M.L. and Soloneski, S., Eds., Integrated Pest Management and Pest Control, Current and Future Tactics, InTech, Rijeka, 639-650.
[24] Joray, M.B., Del Rollán, M.R., Ruiz, G.M., Palacios, S.M. and Carpinella, M.C. (2011) Antibacterial Activity of Extracts from Plants of Central Argentina—Isolation of an Active Principle from Achyrocline satureioides. Planta Medica, 77, 95-100.
[25] Reyes, M.G., Torres, M.J., Maggi, M.D., Marioli, J.M., Gil, R.R., Sosa, V.E., Uriburu, M.L. and Audisio, M.C. (2013) In Vitro Inhibition of Paenibacillus larvae by Different Extracts and Pure Compounds from Flourensia spp. Industrial Crops and Products, 50, 758-763.
[26] Tellez, M., Estell, R., Fredrickson, E., Powell, J., Wedge, D., Schrader, K. and Kobaisy, M. (2001) Extracts of Flourensia cernua (L): Volatile Constituents and Antifungal, Antialgal, and Anti-Termite Bioactivities. Journal of Chemical Ecology, 27, 2263-2273.
[27] Chiari, M.E., Joray, M.B., Ruiz, G., Palacios, S.M. and Carpinella, M.C. (2010) Tyrosinase Inhibitory Activity of Native Plants from Central Argentina: Isolation of an Active Principle from Lithrea molleoides. Food Chemistry, 120, 10-14.
[28] Appezzato-da-Glória, B., Da Costa, F.B., Da Silva, V.C., Gobbo-Neto, L., Garcia Rehder, V.L. and Hayashi, A.H. (2012) Glandular Trichomes on Aerial and Underground Organs in Chrysolaena Species (Vernonieae: Asteraceae): Structure, Ultrastructure and Chemical Composition. Flora, 207, 878-887.
[29] Bartoli, A., Galati, B.G. and Tortosa, R.D. (2011) Anatomical Studies of the Secretory Structures: Glandular Trichomes and Ducts, in Grindelia pulchella Dunal (Astereae, Asteraceae). Flora, 206, 1063-1068.
[30] Pagni, A.M. and Masini, A. (1999) Morphology, Distribution, and Histochemistry of Secretory Structures in Vegetative Organs of Santolina leucantha Bertol. (Asteraceae). Israel Journal of Plant Sciences, 47, 257-263.
[31] Castro, M.M., Leitão-Filho, H.F. and Monteiro, W.R. (1997) Utilização de estruturas secretoras na identificação dos gêneros de Asteraceae de uma vegetação de cerrado. Revista Brasileira de Botanica, 20, 163-174.
[32] Ambrósio, S.R., Oki, Y., Heleno, V.C., Chaves, J.S., Nascimento, P.G., Lichston, J.E., Constantino, M.G., Varanda, E.M. and Da Costa, F.B. (2008) Constituents of Glandular Trichomes of Tithonia diversifolia: Relationships to Herbivory and Antifeedant Activity. Phytochemistry, 69, 2052-2060.
[33] Schorr, K., Merfort, I. and Da Costa, F.B. (2007) A Novel Dimeric Melampolide and Further Terpenoids from Smallanthus sonchifolius (Asteraceae) and the Inhibition of the Transcription Factor NF-κB. Natural Product Communications, 2, 367-374.
[34] Spring, O., Zipper, R., Conrad, J., Vogler, B., Klaiber, I. and Da Costa, F.B. (2003) Sesquiterpene Lactones from Glandular Trichomes of Viguiera radula (Heliantheae; Asteraceae). Phytochemistry, 62, 1185-1189.
[35] Stefani, R., Eberlin, M.N., Tomazela, D.M. and Da Costa, F.B. (2003) Eudesmanolides from Dimerostem mavestitum. Journal of Natural Products, 66, 401-403.
[36] Delbón, N., Cosa, M.T., Dottori, N. and Stiefkens, L. (2007) Análisis comparativo de los caracteres epidérmicos en Flourensia campestris y F. oolepis (Asteraceae). Boletin de la Sociedad Argentina de Botanica, 42, 245-250.
[37] Delbón, N., Cosa, M.T. and Dottori, N. (2007b) Anatomía de órganos vegetativos en Flourencia campestris y F. oolepis (Asteraceae), con especial referencia a las estructuras secretoras. Arnaldoa, 14, 61-70.
[38] Delbón, N., Cosa, M.T. and Bernardello, G. (2012) Exomorfología y anatomía de órganos vegetativos aéreos en especies de Flourensia DC. (Asteraceae) con importancia fitoquímica. Acta Botanica Brasilica, 26, 2-10.
[39] Amrehn, E., Heller, A. and Spring, O. (2014) Capitate Glandular Trichomes of Helianthus annuus (Asteraceae): Ultrastructure and Cytological Development. Protoplasma, 251, 161-167.
[40] Appezzato-da-Glória, B., Hayashi, A.H., Cury, G., Soares, M.K.M. and Rocha, R. (2008) Occurrence of Secretory Structures in Underground Systems of Seven Asteraceae Species. Botanical Journal of the Linnean Society, 157, 789-796.
[41] Heinrich, G., Pfeifhofer, H.W., Stabentheiner, E. and Sawidis, T. (2002) Glandular Hairs of Sigesbeckia jorullensis Kunth (Asteraceae): Morphology, Histochemistry and Composition of Essential Oil. Annals of Botany, 89, 459-469.
[42] Zarlavsky, G.E. (2014) Histología Vegetal: Técnicas simples y complejas. Sociedad Argentina de Botánica, Buenos aires, 1-198.
[43] O'Brien, T.P. and McCully, M.E. (1981) The Study of Plant Structure: Principles and Selected Methods. Termarcarphi Pty. Ltd., Melbourne.
[44] Lersten, N.R. and Curtis, J.D. (1988) Secretory Reservoirs (Ducts) of Two Kinds in Giant Ragweed (Ambrosia trifida; Asteraceae). American Journal of Botany, 75, 1313-1323.
[45] Göpfert, J.C., Heil, N., Conrad, J. and Spring, O. (2005) Cytological Development and Sesquiterpene Lactone Secretion in Capitate Glandular Trichomes of Sunflower. Plant Biology, 7, 148-155.
[46] Göpfert, J.C., MacNevin, G., Ro, D.K. and Spring, O. (2009) Identification, Functional Characterization and Developmental Regulation of Sesquiterpene Synthases from Sunflower Capitate Glandular Trichomes. BMC Plant Biology, 9, 86.
[47] Favi, F., Cantrell, C.L., Mebrahtu, T. and Kraemer, M.E. (2008) Leaf Peltate Glandular Trichomes of Vernonia galamensis ssp. galamensis var. ethiopica Gilbert: Development, Ultrastructure and Chemical Composition. International Journal of Plant Sciences, 169, 605-614.
[48] Ascensão, L., Da-Silva, J.A.T., Barroso, J.G., Figuereido, A.C. and Pedro, L.G. (2001) Glandular Trichomes and Essential Oils of Helichrysum stoechas. Israel Journal of Plant Sciences, 49, 115-122.
[49] Werker, E. and Fahn, A. (1981) Secretory Hairs of Inulaviscosa (L.) Ait.—Development, Ultrastructure, and Secretion. Botanical Gazette, 142, 461-476.
[50] Kelsey, R.G. and Shafizadeh, F. (1980) Glandular Trichomes and Sesquiterpene Lactones of Artemisia nova (Asteraceae). Biochemical Systematics and Ecology, 8, 371-377.
[51] Ramirez, A.M., Stoopen, G., Menzel, T.R., Gols, R., Bouwmeester, H.J., Dicke, M. and Jongsma, M.A. (2012) Bidirectional Secretions from Glandular Trichomes of Pyrethrum Enable Immunization of Seedlings. Plant Cell, 24, 4252-4265.
[52] Ascensão, L., Mota, L. and Castro, M. de M. (1999) Glandular Trichomes on the Leaves and Flowers of Plectranthus ornatus: Morphology, Distribution and Histochemistry. Annals of Botany, 84, 437-447.
[53] Giuliani, C. and Bini, L.M. (2008) Insights into the Structure and Chemistry of Glandular Trichomes of Labiatae, with Emphasis on Subfamily Lamioideae. Plant Systematics and Evolution, 276, 199-208.
[54] Jaime, R., Rey, P.J., Alcántara, J.M. and Bastida, J.M. (2013) Glandular Trichomes as an Inflorescence Defense Mechanism against Insect Herbivores in Iberian Columbines. Oecologia, 172, 1051-1060.
[55] Fahn, A. (2000) Structure and Function of Secretory Cells. In: Hallahan, D.L., Gray, J.C. and Callow, J.A., Eds., Advances in Botanical Research, Incorporating Advances in Plant Pathology, Volume 31, Plant Trichomes, Academic Press, London, 37-66.
[56] Monteiro, W.R., De Moraes Castro, M., Mazzoni-Viveiros, S.C. and Mahlberg, P.G. (2001) Development and Some Histochemical Aspects of Foliar Glandular Trichomes of Stevia rebaudiana (Bert.) Bert.—Asteraceae. Revista Brasileira de Botanica, 24, 349-357.
[57] Monteiro, W.R., Caldeira, W., De Moraes Castro, M., Mahlberg, P.G. and Cruz, M.V. (2003) Ultrastructural Observations on Foliar Glandular Trichomes of Stevia rebaudiana. South African Journal of Botany, 69, 489-499.
[58] Werker, E., Putievsky, E., Ravid, U., Dudai, N. and Katzir, I. (1994) Glandular hairs, Secretory Cavities, and the Essential Oil in Leaves of Tarragon (Artemisia dracunculus L.). Journal of Herbs, Spices & Medicinal Plants, 2, 19-32.
[59] Duke, S.O., Canel, C., Rimando, A.M., Tellez, M.R., Duke, M.V. and Paul, R.N. (2000) Current and Potential Exploitation of Plant Glandular Trichome Productivity. In: Hallahan, D.L. and Gray, J.C., Eds., Advances in Botanical Research, Incorporating Advances in Plant Pathology, Volume 31, Plant Trichomes, Academic Press, London, 121-151.
[60] Hallahan, D.L. (2000) Monoterpenoid Biosynthesis in Glandular Trichomes of Labiate Plants. In: Hallahan, D.L. and Gray, J.C., Eds., Advances in Botanical Research, Incorporating Advances in Plant Pathology, Volume 31, Plant Trichomes, Academic Press, London, 77-120.
[61] Hashidoko, Y., Endoh, K., Kudo, T. and Tahara, S. (2001) Capability of Wild Rosa rugosa and Its Varieties and Hybrids to Produce Sesquiterpene Components in Leaf Glandular Trichomes. Bioscience, Biotechnology and Biochemistry, 65, 2037-2043.
[62] Hay, R.K.M. and Svoboda, K.P. (1993) Botany. In: Hay, R.K.M. and Waterman, P.G., Eds., Volatile Oil Crops: Their Biology, Biochemistry, and Production, Longman Scientific and Technical, Harlow, 5-22.
[63] Siebert, D.J. (2004) Localization of Salvinorin A and Related Compounds in Glandular Trichomes of the Psychoactive Sage, Salvia divinorum. Annals of Botany, 93, 763-771.
[64] Wang, W., Wang, Y., Zhang, Q., Qi, Y. and Guo, D. (2009) Global Characterization of Artemisia annua Glandular Trichome Transcriptome Using 454 Pyrosequencing. BMC Genomics, 10, 465.
[65] Spring, O. (1989) Microsampling: An Alternative Approach Using Sesquiterpene Lactones for Systematic. Biochemical Systematics and Ecology, 17, 509-517.
[66] Combrick, S., Du Plooy, G.W., McCrindle, R.I. and Botha, B.M. (2007) Morphology and Histochemistry of the Glandular Trichomes of Lippias caberrima (Verbenaceae). Annals of Botany, 99, 1111-1119.
[67] Lommen, W.J.M., Schenk, E., Bouwmeester, H.J. and Verstappen, F.W.A. (2006) Trichome Dynamics and Artemisinin Accumulation during Development and Senescence of Artemisia annua Leaves. Planta Medica, 72, 336-345.
[68] Hashidoko, Y., Tahara, S. and Mizutani, J. (1994) Six Sesquiterpenoids from Glandular Trichome Exudates of Rosa rugosa. Phytochemistry, 35, 325-329.
[69] Carlquist, S. (1966) Wood Anatomy of Compositae: A Summary, with Comments on Factors Controlling Wood Evolution. Aliso, 6, 25-44.
[70] Robinson, H. (1981) A Revision of the Tribal and Subtribal Limits of the Heliantheae (Asteraceae). Smithsonian Contributions to Botany, 51, 1-102.
[71] Feijóo, M.S., Arce, M.E. and D’Ambrogio, A. (2005) Variación morfoanatómica en una población de Senecio filaginoides (Asteraceae). Polibotánica, 19, 1-17.
[72] Baier, P., Führer, E., Kirisits, T. and Rosner, S. (2002) Defence Reactions of Norway Spruce against Bark Beetles and the Associated Fungus Ceratocystis polonica in Secondary Pure and Mixed Species Stands. Forest Ecology and Management, 159, 73-86.
[73] Tolera, M., Menger, D., Sass-Klaassen, U., Sterck, F.J., Copini, P. and Bongers, F. (2013) Resin Secretory Structures of Boswellia papyrifera and Implications for Frankincense Yield. Annals of Botany, 111, 61-68.
[74] Gunning, B.E.S. and Pate, J.S. (1969) “Transfer Cells” Plant Cells with Wall Ingrowths, Specialized in Relation to Short Distance Transport of Solutes—Their Occurrence, Structure, and Development. Protoplasma, 68, 107-133.
[75] Herrero, M. and Dickinson, H.G. (1979) Pollen-Pistil Incompatibility in Petunia hybrida: Changes in the Pistil Following Compatible and Incompatible Intraspecific Crosses. Journal of Cell Science, 36, 1-18.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.