[1]
|
Leahy, S. (2013) Peak Water, Peak Oil… Now, Peak Soil?
http://www.ipsnews.net/2013/05/peak-water-peak-oilnow-peak-soil/
|
[2]
|
MacCarty, N., Ogle, D., Still, D., Bond, T. and Roden, C. (2008) A Laboratory Comparison of the Global Warming Impact of Five Major Types of Biomass Cooking Stoves. Energy for Sustainable Development, 12, 56-65.
http://dx.doi.org/10.1016/S0973-0826(08)60429-9
|
[3]
|
Johnson, M., Edwards, R., Alatorre Frenk, C. and Masera, O. (2008) In-Field Greenhouse Gas Emissions from Cookstoves in Rural Mexican Households. Atmospheric Environment, 42, 1206-1222.
http://dx.doi.org/10.1016/j.atmosenv.2007.10.034
|
[4]
|
Tye, Y.Y., Lee, K.T., Wan Abdullah, W.N. and Leh, C.P. (2011) Second-Generation Bioethanol as a Sustainable Energy Source in Malaysia Transportation Sector: Status, Potential and Future Prospects. Renewable & Sustainable Energy Reviews, 15, 4521-4536.
http://dx.doi.org/10.1016/j.rser.2011.07.099
|
[5]
|
Oanh, N.T.K., Bich, T.L., Tipayarom, D., Manadhar, B.R., Prapat, P., Simpson, C.D. and Liu, L.-J.S. (2011) Characterization of Particulate Matter Emission from Open Burning of Rice Straw. Atmospheric Environment, 45, 493-502.
http://dx.doi.org/10.1016/j.atmosenv.2010.09.023
|
[6]
|
Darley, E.F., Burleson, F.R., Mateer, E.H., Middleton, J.T. and Osterli, V.P. (1966) Contribution of Burning of Agricultural Wastes to Photochemical Air Pollution. Journal of the Air Pollution Control Association, 11, 685-690.
http://dx.doi.org/10.1080/00022470.1966.10468533
|
[7]
|
Ballard-Tremeer, G. (1997) Emissions of Rural Wood-Burning Cooking Devices.
http://www.ecoltdgroup.com/wp-content/uploads/2011/12/ PhDThesis_GrantBallard-Tremeer.pdf
|
[8]
|
Glaser, B., Lehmann, J. and Zech, W. (2002) Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics With Charcoal—A Review. Biology and Fertility of Soils, 35, 219-230.
http://dx.doi.org/10.1007/s00374-002-0466-4
|
[9]
|
Carter, S., Shackley, S., Sohi, S., Suy, T. and Haefele, S. (2013) The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy, 3, 404-418.
http://dx.doi.org/10.3390/agronomy3020404
|
[10]
|
Downie, A., Munroe, P., Cowie, A., Zwieten, V.L. and Lau, S.M.D. (2012) Biochar as a Geoengineering Climate Solution: Hazard Identification and Risk Management. Critical Reviews in Environmental Science and Technology, 42, 225-250.
|
[11]
|
Johnson, M., Edwards, R., Ghilardi, A., Berrueta, V., Gillen, D., Frenk, C.A. and Masera, O. (2009) Quantification of Carbon Savings from Improved Biomass Cookstove Projects. Environmental Science and Technology, 43, 2456-2462.
http://dx.doi.org/10.1021/es801564u
|
[12]
|
Simon, G., Bumpus, A.G. and Mann, P. (2012) Win-Win Scenarios at the Climate-Development Interface: Challenges and Opportunities for Cookstove Replacement Programs through Carbon Finance. Global Environmental Change, 22, 275-287.
http://dx.doi.org/10.1016/j.gloenvcha.2011.08.007
|
[13]
|
Garrett, S., Hopke, P. and Behn, W. (2010) A Research Road Map: Improved Cook Stove Development and Deployment for Climate Change Mitigation and Women’s and Children’s Needs.
http://www.geos.ed.ac.uk/homes/sshackle/BiocharStovesInnovation.pdf
|
[14]
|
Apaydin-Varol, E. and Pütün, A.E. (2012) Preparation and Characterization of Pyrolytic Chars from Different Biomass Samples. Journal of Analytical and Applied Pyrolysis, 98, 29-36.
http://dx.doi.org/10.1016/j.jaap.2012.07.001
|
[15]
|
Belonio, A.T. (2005) Rice Husk Gas Stove Handbook. Appropriate Technology Center of the Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University, Iloilo City, Philippines.
http://bioenergylists.org/stovesdoc/Belonio/Belonio_gasifier.pdf
|
[16]
|
Panwar, N.L. and Rathore, N.S. (2008) Design and Performance Evaluation of a 5 kW Producer Gas Stove. Biomass and Bioenergy, 32, 1349-1352.
http://dx.doi.org/10.1016/j.biombioe.2008.04.007
|
[17]
|
Saravanakumar, A., Haridasan, T.M., Reed, T.B. and Bai, R.K. (2007) Experimental Investigation and Modelling Study of Long Stick Wood Gasification in a Top Lit Updraft Fixed Bed Gasifier. Fuel, 86, 2846-2856.
http://dx.doi.org/10.1016/j.fuel.2007.03.028
|
[18]
|
Zainal, Z.A., Rifau, A., Quadir, G.A. and Seetharamu, K.N. (2002) Experimental Investigation of a Downdraft Biomass Gasifier. Biomass and Bioenergy, 23, 283-289.
http://dx.doi.org/10.1016/S0961-9534(02)00059-4
|
[19]
|
Kaupp, A. (1984) Gasification of Rice Hull: Theory and Praxis. Federal Republic of Germany: GATE/GTZ, 303 p.
http://dx.doi.org/10.1007/978-3-322-96308-6
|
[20]
|
ASTM D1762-84 (2013) Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM International, West Conshohocken.
http://www.astm.org/Standards/D1762.htm
|
[21]
|
Anon (1983) Simple Technologies for Charcoal Making. FAO Forestry Paper, FAO, Rome, 4.
|
[22]
|
Buckee, G. (1994) Determination of Total Nitrogen in Barley, Malt and Beer by Kjeldahl Procedures and the Dumas Combustion Method. Journal of the Institute of Brewing, 100, 57-64.
|
[23]
|
Enders, A., Hanley, K., Whitman, T., Joseph, S. and Lehmann, J. (2012) Characterization of Biochars to Evaluate Recalcitrance and Agronomic Performance. Bioresource Technology, 114, 644-653.
http://dx.doi.org/10.1016/j.biortech.2012.03.022
|
[24]
|
Hensley, M., Gu, S. and Ben, E. (2011) Biochar Production Potential in Ghana—A Review. Renewable & Sustainable Energy Reviews, 15, 3539-3551. http://dx.doi.org/10.1016/j.rser.2011.05.010
|
[25]
|
Garcia-Bacaicoa, P., Bilbao, R., Arauzo, J. and Salvador, M.L. (1994) Scale-Up of Downdraft Moving Bed Gasifiers (25 – 300 kg/h)—Design, Experimental Aspects and Results. Bioresource Technology, 48, 229-235.
http://dx.doi.org/10.1016/0960-8524(94)90151-1
|
[26]
|
Agrafioti, E., Bouras, G., Kalderis, D. and Diamadopoulos, E. (2013) Biochar Production by Sewage Sludge Pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72-78. http://dx.doi.org/10.1016/j.jaap.2013.02.010
|
[27]
|
Wiedner, K., Rumpel, C., Steiner, C., Pozzi, A., Maas, R. and Glaser, B. (2013) Chemical Evaluation of Chars Produced by Thermochemical Conversion (Gasification, Pyrolysis and Hydrothermal Carbonization) of Agro-Industrial Biomass on a Commercial Scale. Biomass and Bioenergy, 59, 264-278.
http://dx.doi.org/10.1016/j.biombioe.2013.08.026
|
[28]
|
Duku, M.H., Gu, S. and Hagan, E.B. (2011) Biochar Production Potential in Ghana—A Review. Renewable & Sustainable Energy Reviews, 15, 3539-3551.
http://dx.doi.org/10.1016/j.rser.2011.05.010
|
[29]
|
Maschio, G., Koufopanos, C. and Lucchesi, A. (1992) Pyrolysis, a Promising Route for Biomass Utilization. Bioresource Technology, 42, 219-231.
http://dx.doi.org/10.1016/0960-8524(92)90025-S
|
[30]
|
Maiti, S., Dey, S., Purakayastha, S. and Ghosh, B. (2006) Physical and Thermochemical Characterization of Rice Husk Char as a Potential Biomass Energy Source. Bioresource Technology, 97, 2065-2070.
http://dx.doi.org/10.1016/j.biortech.2005.10.005
|
[31]
|
Nsamba, H., Hale, S., Cornelissen, G. and Bachmann, R. (2014) Improved Gasification of Rice Husks for Optimized Biochar Production in a Top Lit Updraft Gasifier. Journal of Sustainable Bioenergy Systems, 4, 225-242.
http://dx.doi.org/10.4236/jsbs.2014.44021
|
[32]
|
Galinato, S.P., Yoder, J.K. and Granatstein, D. (2011) The Economic Value of Biochar in Crop Production and Carbon Sequestration. Energy Policy, 39, 6344-6350.
http://dx.doi.org/10.1016/j.enpol.2011.07.035
|
[33]
|
Luoga, E., Witkowski, E.T. and Balkwill, K. (2000) Economics of Charcoal Production in Miombo Woodlands of Eastern Tanzania: Some Hidden Costs Associated with Commercialization of the Resources. Ecological Economics, 35, 243-257.
http://dx.doi.org/10.1016/S0921-8009(00)00196-8
|
[34]
|
Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R. and Lehmann, J. (2010) Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environmental Science & Technology, 44, 827-833.
http://dx.doi.org/10.1021/es902266r
|