[1]
|
Guillevin, N., Heurtault, B.J.B., Geerligs, L.J. and Weeber, A.W. (2011) Development towards 20% Efficient Si MWT Solar Cells for Low-Cost Industrial Production. Energy Procedia, 8, 9-16. http://dx.doi.org/10.1016/j.egypro.2011.06.094
|
[2]
|
De Wolf, S., Duerinckx, F., Agostinelli, G. and Beaucarne, G. (2006) Low-Cost Rear Side Floating Junction Solar-Cell Issues on mc-Si. Solar Energy Materials and Solar Cells, 90, 3431-3437. http://dx.doi.org/10.1016/j.solmat.2006.02.035
|
[3]
|
Huang, J.Y., Lin, C.Y., Shen, C.H., Shieh, J.M. and Dai, B.T. (2012) Low Cost High-Efficiency Amorphous Silicon Solar Cells with Improved Light-Soaking Stability. Solar Energy Materials and Solar Cells, 98, 277-282. http://dx.doi.org/10.1016/j.solmat.2011.11.023
|
[4]
|
Terakawa, A. (2013) Review of Thin-Film Silicon Deposition Techniques for High-Efficiency Solar Cells Developed at Panasonic/Sanyo. Solar Energy Materials and Solar Cells, 119, 204-208. http://dx.doi.org/10.1016/j.solmat.2013.06.044
|
[5]
|
Chaudhari, V.A. and Solanki, C.S. (2010) A Novel Two Step Metallization of Ni/Cu for Low Concentrator c-Si Solar Cells. Solar Energy Materials and Solar Cells, 94, 2094-2101. http://dx.doi.org/10.1016/j.solmat.2010.06.032
|
[6]
|
Chu, L.K., Yen, C.W. and Sayed, M.A.E. (2010) Bacteriorhodopsin-Based Photo-Electrochemical Cell. Biosensors and Bioelectronics, 26, 620-626. http://dx.doi.org/10.1016/j.bios.2010.07.013
|
[7]
|
Barote, M.A., Kamble, S.S., Deshmukh, L.P. and Masumdar, E.U. (2013) Photo-Electrochemical Performance of Cd1-xPbxS (0≤x≤1) Thin Films. Ceramics International, 39, 1463-1467. http://dx.doi.org/10.1016/j.ceramint.2012.07.090
|
[8]
|
Tseng, C.J., Wang, C.H. and Cheng, K.W. (2012) Photoelectrochemical Performance of Gallium-Doped AgInS2 Photoelectrodes Prepared by Electrodeposition Process. Solar Energy Materials and Solar Cells, 96, 33-42. http://dx.doi.org/10.1016/j.solmat.2011.09.010
|
[9]
|
Trunk, M., Sobas, A.G., Venkatachalapathy, V., Zhang, T., Galeckas, A. and Kuznetsov, A.Y. (2012) Testing ZnO Based Photoanodes for PEC Applications. Energy Procedia, 22, 101-107. http://dx.doi.org/10.1016/j.egypro.2012.05.221
|
[10]
|
Jacobsson, T.J., Bjorkman, C.P., Edoff, M. and Edvinsson, T. (2013) CuInxGa1-xSe2 as an Efficient Photocathode for Solar Hydrogen Generation. International Journal of Hydrogen Energy, 38, 15027-15035. http://dx.doi.org/10.1016/j.ijhydene.2013.09.094
|
[11]
|
Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. http://dx.doi.org/10.1038/238037a0
|
[12]
|
Imajo, T., Okano, H. and Maeda, A. (2008) Photocatalytic Lithography Using Zinc Oxide Nanoislands. Japanese Journal of Applied Physics, 47, 2330. http://dx.doi.org/10.1143/JJAP.47.2330
|
[13]
|
Prado, A.G.S., Bolzon, L.B., Pedroso, C.P., Moura, A.O. and Costa, L.L. (2008) Nb2O5 as Efficient and Recyclable Photocatalyst for Indigo Carmine Degradation. Applied Catalysis B: Environmental, 82, 219-224. http://dx.doi.org/10.1016/j.apcatb.2008.01.024
|
[14]
|
Roza, L., Rahman, M.Y.A., Umar, A.A. and Salleh, M.M. (2015) Direct Growth of Oriented ZnO Nanotubes by Self-Selective Etching at Lower Temperature for Photo-Electrochemical (PEC) Solar Cell Application. Journal of Alloys and Compounds, 618, 153-158. http://dx.doi.org/10.1016/j.jallcom.2014.08.113
|
[15]
|
Suzuki, S., Teshima, K., Ishizaki, T., Lee, S.H., Yubuta, K., Shishido, T. and Oishi, S. (2011) Unique Three-Dimensional Nano-/Micro-Textured Surfaces Consisting of Highly Crystalline Nb2O5 Nanotubes. Journal of Crystal Growth, 318, 1095-1100. http://dx.doi.org/10.1016/j.jcrysgro.2010.11.129
|
[16]
|
Nayeri, F.D., Soleimani, E.A. and Salehi, F. (2013) Synthesis and Characterization of ZnO Nanowires Grown on Different Seed Layers: The Application for Dye-Sensitized Solar Cells. Renewable Energy, 60, 246-255. http://dx.doi.org/10.1016/j.renene.2013.05.006
|
[17]
|
Lin, Y., Yang, Y.J. and Hsu, C.C. (2011) Synthesis of Niobium Oxide Nanowires Using an Atmospheric Pressure Plasma Jet. Thin Solid Films, 519, 3043-3049. http://dx.doi.org/10.1016/j.tsf.2010.12.024
|
[18]
|
Ye, N., Qi, J., Qi, Z., Zhang, X., Yang, Y., Liu, J. and Zhang, Y. (2010) Improvement of the Performance of Dye-Sensitized Solar Cells Using Sn-Doped ZnO Nanoparticles. Journal of Power Sources, 195, 5806-5809. http://dx.doi.org/10.1016/j.jpowsour.2010.03.036
|
[19]
|
Méndez, S.M., Henríquez, Y., Domínguez, O., D’Ornelas, L. and Krentzien, H. (2006) Catalytic Properties of Silica Supported Titanium, Vanadium and Niobium Oxide Nanoparticles towards the Oxidation of Saturated and Unsaturated Hydrocarbons. Journal of Molecular Catalysis A: Chemical, 252, 226-234. http://dx.doi.org/10.1016/j.molcata.2006.02.041
|
[20]
|
Kang, Z., Gu, Y., Yan, X., Bai, Z., Liu, Y., Liu, S., Zhang, X., Zhang, Z., Zhang, X. and Zhang, Y. (2015) Enhanced Photoelectrochemical Property of ZnO Nanorods Array Synthesized on Reduced Graphene Oxide for Self-Powered Biosensing Application. Biosensors and Bioelectronics, 64, 499-504. http://dx.doi.org/10.1016/j.bios.2014.09.055
|
[21]
|
Wen, H., Liu, Z., Wang, J., Yang, Q., Li, Y. and Yu, J. (2011) Facile Synthesis of Nb2O5 Nanorod Array Films and Their Electrochemical Properties. Applied Surface Science, 257, 10084-10088. http://dx.doi.org/10.1016/j.apsusc.2011.07.001
|
[22]
|
Kou, H., Zhang, X., Du, Y., Ye, W., Lin, S. and Wang, C. (2011) Electrochemical Synthesis of ZnO Nanoflowers and Nanosheets on Porous Si as Photoelectric Materials. Applied Surface Science, 257, 4643-4649. http://dx.doi.org/10.1016/j.apsusc.2010.12.108
|
[23]
|
Choi, B., Myung, N. and Rajeshwar, K. (2007) Double Template Electrosynthesis of ZnO Nanodot Array. Electrochemistry Communications, 9, 1592-1595. http://dx.doi.org/10.1016/j.elecom.2007.02.025
|
[24]
|
Qi, S., Zuo, R., Liu, Y. and Wang, Y. (2013) Synthesis and Photocatalytic Activity of Electrospun Niobium Oxide Nanofibers. Materials Research Bulletin, 48, 1213-1217. http://dx.doi.org/10.1016/j.materresbull.2012.11.074
|
[25]
|
Bonakdarpour, A., Tucker, R.T., Fleischauer, M.D., Beckers, N.A., Brett, M.J. and Wilkinson, D.P. (2012) Nanopillar Niobium Oxides as Support Structures for Oxygen Reduction Electrocatalysts. Electrochimica Acta, 85, 492-500. http://dx.doi.org/10.1016/j.electacta.2012.08.005
|
[26]
|
Hayashi, Y., Arita, M., Koga, K. and Masuda, M. (1995) Photo-Electrochemical Properties of Hydrogen in Anodically Oxidized Niobium. Journal of Alloys and Compounds, 231, 702-705. http://dx.doi.org/10.1016/0925-8388(95)01756-9
|
[27]
|
Sugisaki, N., Niizuma, K. and Ikawa, H. (2010) Photocatalytic Effect of Niobium Oxide Film by RF Magnetron Sputtering Method. College of Industrial Technology, Nihon University Lecture Meeting.
|
[28]
|
Lide, D.R. (2001) CRC Handbook of Chemistry and Physics. 82nd Edition, CRC Press, Boca Raton.
|
[29]
|
Asano, T., Kubo, T. and Nishikitani, Y. (2005) Short-Circuit Current Density Behavior of Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 44, 6776-6780. http://dx.doi.org/10.1143/JJAP.44.6776
|
[30]
|
Kim, J.H. and Ahn, K.S. (2010) Tri-Branched Tri-Anchoring Organic Dye for Visible Light-Responsive Dye-Sensitized Photoelectrochemical Water-Splitting Cells. Japanese Journal of Applied Physics, 49, Article ID: 060219. http://dx.doi.org/10.1143/JJAP.49.060219
|
[31]
|
Onodera, M., Nagumo, R., Miura, R., Suzuki, A., Tsuboi, H., Hatakeyama, N., Endou, A., Takada, H., Kubo, M. and Miyamoto, A. (2011) Multiscale Simulation of Dye-Sensitized Solar Cells Considering Schottky Barrier Effect at Photoelectrode. Japanese Journal of Applied Physics, 50, Article ID: 04DP06. http://dx.doi.org/10.1143/JJAP.50.04DP06
|
[32]
|
Pourbaix, M. (1966) Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press, Oxford.
|
[33]
|
Yagi, S., Kondo, Y., Satake, Y., Ashida, A. and Fujimura, N. (2012) Local pH Control by Electrolysis for ZnO Epitaxial Deposition on a Pt Cathode. Electrochimica Acta, 62, 348-353. http://dx.doi.org/10.1016/j.electacta.2011.12.059
|
[34]
|
Han, Y., Chen, Z., Tong, L., Yang, L., Shen, J., Wang, B., Liu, Y., Liu, Y. and Chen, Q. (2013) Reduction of N-Nitrosodimethylamine with Zero-Valent Zinc. Water Research, 47, 216-224. http://dx.doi.org/10.1016/j.watres.2012.09.043
|
[35]
|
Wranglén, G. (1985) An Introduction to Corrosion and Protection of Metals. Chapman & Hall, London. http://dx.doi.org/10.1007/978-94-009-4850-1
|
[36]
|
Kojima, Y. (2011) Electrochemical Analysis for Corrosion Behavior of Aluminum, Keikinzoku. Journal of Japan Institute of Light Metals, 61, 167. (In Japanese).
|
[37]
|
Fruhwirth, O., Herzog, G.W. and Poulios, J. (1985) Dark Dissolution and Photodissolution of ZnO. Surface Technology, 24, 293-300. http://dx.doi.org/10.1016/0376-4583(85)90079-2
|
[38]
|
Asselin, E., Ahmed, T.M. and Alfantazi, A. (2007) Corrosion of Niobium in Sulphuric and Hydrochloric Acid Solutions at 75 and 95℃. Corrosion Science, 49, 694-710. http://dx.doi.org/10.1016/j.corsci.2006.05.028
|
[39]
|
Han, J., Qiu, W. and Gao, W. (2010) Potential Dissolution and Photo-Dissolution of ZnO Thin Films. Journal of Hazardous Materials, 178, 115-122. http://dx.doi.org/10.1016/j.jhazmat.2010.01.050
|
[40]
|
Rao, M.V., Rajeshwar, K., Pal Verneker, V.R. and Du Bow, J. (1980) Photosynthetic Production of H2 and H2O2 on Semiconducting Oxide Grains in Aqueous Solutions. The Journal of Physical Chemistry, 84, 1987-1991. http://dx.doi.org/10.1021/j100452a023
|
[41]
|
Izaki, M. and Omi, T. (1996) Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films. Journal of The Electrochemical Society, 143, L53-L55. http://dx.doi.org/10.1149/1.1836529
|