[1]
|
Pysklywec, R.N. and Cruden, A.R. (2004) Coupled Crust-Mantle Dynamics and Inter-Plate Tectonics: Two-Dimensional Numerical and Three-Dimensional Analogue Modeling. Geochemistry Geophysics Geosystems, 5, 1-20. http://dx.doi.org/10.1029/2004GC000748
|
[2]
|
Taras, G. (2010) Introduction to Numerical Geodynamic Modeling. Cambridge University Press, Cambridge.
|
[3]
|
Harbaugh, A.W. and McDonald, M.G. (1996) User’s Documentation for MODFLOW-96, an Updata to the US Geological Survey Modular Finite-Difference Ground-Water Flow. US Geological Survey Open-File Report 96-485.
|
[4]
|
Dierch, H.-J.G. (1998) FEFLOW-User’s Manual: WASI-Institute of Water Resources. Planning and System Research Ltd., Berlin.
|
[5]
|
Bundschuh, J. and Arriage, M.C.S. (2010) Introduction to the Numerical Modelling of Groundwater and Geothermal Systems, Fundamentals of Mass, Energy and Solute Transport in Poroelastic Rocks. CRC Press, Taylor & Francis Group, Boca Raton.
|
[6]
|
Kelley, K.R. and Marfurt, K.J. (1990) Numerical Solutions of Acoustic and Elastic Wave Equations: Finite-Difference and Finite-Element Algorithms. Society of Exploration Geophysics, Tulsa.
|
[7]
|
Kerry, K. and Weiss, C. (2006) Adaptive Finite Element Modeling Using Unstructuredgrid, the 2D Magnetotelluric Example. Geophysics, 71, G291-G294. http://dx.doi.org/10.1190/1.2348091
|
[8]
|
Zhou, B. and Greenhalgh, S. (2011) 3-D Frequency-Domain Seismic Wave Modeling in Heterogeneous, Anisotropic Media Using a Gaussian Quadrature Grid Approach. Geophysical Journal International, 184, 507-526. http://dx.doi.org/10.1111/j.1365-246X.2010.04859.x
|
[9]
|
Zhou, B., Greenhalgh, S. and Maurer, H. (2012) 2.5-D Frequency-Domain Seismic Wave Modeling in Heterogeneous, Anisotropic Media Using a Gaussian Quadrature Grid Technique. Computer & Geosciences, 39, 18-33. http://dx.doi.org/10.1016/j.cageo.2011.06.005
|
[10]
|
Robert, T., Vivier, F. and Shenghui, L. (2004) Three-Dimensional Modelling of Ocean Electrodynamics Using Gauged Potentials. Geophysical Journal International, 158, 874-887. http://dx.doi.org/10.1111/j.1365-246X.2004.02318.x
|
[11]
|
Virieux, J., Calandra, H. and Plessix, R. (2011) A Review of the Spectral, Pseudo-Spectral, Finite-Difference and Finite-Element Modeling Techniques for Geophysical Imaging. Geophysical Prospecting, 59, 794-813.
|
[12]
|
Dablain, M.A. (1986) The Application of High-Order Differencing to the Scalar Wave Equation. Geophysics, 51, 54-66. http://dx.doi.org/10.1190/1.1442040
|
[13]
|
Gilles, L., Hagness, S.C. and Vazquez, L. (2000) Comparison between Staggered and Unstaggered Finite-Difference Time-Domain Grid for Few-Cycle Temporal Optical Solution Propagation. Journal of Computational Physics, 161, 379-400. http://dx.doi.org/10.1006/jcph.2000.6460
|
[14]
|
Festa, G. and Vilotte, J. (2005) The Newmark Scheme as Velocity-Stress Time Staggered: An Efficient PML Implementation for Spectral Element Simulations of Electrodynamics. Geophysical Journal International, 161, 789-812. http://dx.doi.org/10.1111/j.1365-246X.2005.02601.x
|
[15]
|
Streich, R. (2009) 3D Finite-Difference Frequency-Domain Modeling of Controlled-Source Electromagnetic Data: Direct Solution and Optimization for High Accuracy. Geophysics, 74, F95-F105. http://dx.doi.org/10.1190/1.3196241
|
[16]
|
Robertsson, J.O. (1996) Numerical Free-Surface Condition for Elastic/Viscoelastic Finite-Difference Modeling in the Presence of Topography. Geophysics, 61, 1921-1934. http://dx.doi.org/10.1190/1.1444107
|
[17]
|
Schwarz, H.R. (1988) Finite Element Methods. Academic Press, New York.
|
[18]
|
Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (1988) Spectral Methods in Fluid Dynamics. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-3-642-84108-8
|
[19]
|
Komatitsch, D. and Tromp, J. (2002) Spectral-Element Simulation of Global Seismic Wave Propagation—I. Validation. Geophysical Journal International, 149, 390-412. http://dx.doi.org/10.1046/j.1365-246X.2002.01653.x
|
[20]
|
Komatitsch, D., Coutel, F. and Mora, P. (1996) Tensorial Formulation of the Wave-Equation for Modeling Curved Interfaces. Geophysical Journal International, 127, 156-168. http://dx.doi.org/10.1111/j.1365-246X.1996.tb01541.x
|
[21]
|
Hestholm, S. and Ruud, B. (1998) 3-D Finite-Difference Elastic Wave Modeling Including Surface Topography. Geophysics, 63, 613-622. http://dx.doi.org/10.1190/1.1444360
|
[22]
|
Zhang, W. and Chen, X. (2006) Traction Image Method for Irregular Free Surface Boundaries in Finite-Difference Seismic Wave Simulation. Geophysical Journal International, 167, 337-353. http://dx.doi.org/10.1111/j.1365-246X.2006.03113.x
|
[23]
|
Trefethen, L.N. (2000) Spectral Method in MATLAB. SIAM, Philadelphia. http://dx.doi.org/10.1137/1.9780898719598
|
[24]
|
Tessmer, E. and Kosloff, D. (1994) 3-D Elastic Modeling with Surface Topography by a Chebyshev Spectral Method. Geophysics, 59, 464-473. http://dx.doi.org/10.1190/1.1443608
|
[25]
|
Igel, H. (1999) Wave Propagation in a Three-Dimensional Spherical Section by the Chebyshev Spectral Method. Geophysical Journal International, 136, 559-566. http://dx.doi.org/10.1190/1.1443608
|
[26]
|
John, F. (1982) Partial Differential Equations. Springer-Verlag, New York.
|
[27]
|
Vorst, H.A. (2003) Iterative Krylov Methods for a Large Linear Systems. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511615115
|
[28]
|
Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y. and Pralet, S. (2006) Hybrid Scheduling for the Parallel Solution of Linear Systems. Parallel Computing, 32, 136-156. http://dx.doi.org/10.1016/j.parco.2005.07.004
|
[29]
|
Helmuth, S. (1995) One Dimensional Spline Interpolation Algorithms. A. K. Peters, Wellesley.
|
[30]
|
Helmuth, S. (1995) Two Dimensional Spline Interpolation Algorithms. A. K. Peters, Wellesley.
|