A Probabilistic Approach for Spring Recession Flows Analysis

Abstract Full-Text HTML XML Download Download as PDF (Size:334KB) PP. 11-18
DOI: 10.4236/ojmh.2015.52002    4,238 Downloads   4,776 Views  

ABSTRACT

Spring recession flows are analyzed from a Bayesian point of view. Two general equations are derived and it is shown that the classical formulas of recession flow are particular cases of both equations. It is shown that most of the recession equations reflect a non-Markovian process. That means that the groundwater storage exhibits a memory effect and that there is a nonlinear relationship between flow and storage. The Bayesian approach presented in this paper makes it possible to give a probabilistic meaning to recession flow equations derived according to a physical approach and can be an alternative to the study of complex reservoir for which the physical processes governing recession flow are unclear. Twelve spring recession flow series are analysed in order to validate the probabilistic approach presented in this paper and a conceptual model of storage-outflow is proposed.

Cite this paper

Carlier, E. and Khattabi, J. (2015) A Probabilistic Approach for Spring Recession Flows Analysis. Open Journal of Modern Hydrology, 5, 11-18. doi: 10.4236/ojmh.2015.52002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Boussinesq, J. (1877) Essai sur la theorie des eaux courantes. Memoires presentes par divers savants a l’Academie des Sciences de l’Institut National de France, Tome XXIII, No 1. Imprimerie Nationale, Paris.
[2] Maillet, E. (1905) Essais d’hydraulique souterraine et fluviale. Librairie Sci., A. Hermann, Paris, 218pp,
[3] Barnes, B.S. (1939) The Structure of Discharge-Recession Curves. Transactions of American Geophysical Union, 20, 721-725.
[4] Horton, R.E. (1933) The Role of Infiltration in the Hydrologic Cycle. Transactions of American Geophysical Union, 14, 446-460.
[5] Wittenberg, H. (2003) Effects of Season and Man-Made Changes on Baseflow and Flow Recession: Case Studies. Hydrological Processes, 17, 2113-2123.
http://dx.doi.org/10.1002/hyp.1324
[6] Hammond, M. and Han, D. (2006) Recession Curve Estimation for Storm Event Separations. Journal of Hydrology, 330, 573-585.
http://dx.doi.org/10.1016/j.jhydrol.2006.04.027
[7] Aksoy, H., Bayazit, M. and Wittenberg, H. (2001) Probabilistic approach to modelling of recession curves. Hydrological Sciences Journal, 46, 269-285.
http://dx.doi.org/10.1080/02626660109492821
[8] Aksoy, H. (2004) Using Markov Chains for Nonperennial Daily Streamflow Data Generation. Journal of Applied Statistics, 31, 1083-1094.
http://dx.doi.org/10.1080/0266476042000280418
[9] Griffiths, G.A. and Clausen, B. (1997) Streamflow recession in basins with multiple water storages. Journal of Hydrology, 190, 60-74.
http://dx.doi.org/10.1016/S0022-1694(96)03060-0
[10] Coutagne, A. Meteorologie et hydrologie. (1948) Etude generale des debits et des facteurs qui les conditionnent. 2eme partie: les variations de debit en periode non influencee par les precipitations. Le debit d’infiltration (correlations fluviales internes). La Houille Blanche, No. 5, 416-436.
http://dx.doi.org/10.1051/lhb/1948053
[11] Guyot, J.L. (1986) Etude hydodynamique et hydrochimique des sources karstiques de Poussarou et Malibert (Montagne Noire-Herault) . Karstologia, 7, 25-30.
[12] Bonacci, O. (1993) Karst Springs Hydrographs as Indicators of Karst Aquifers. Hydrological Sciences Journal, 38, 51-62.
http://dx.doi.org/10.1080/02626669309492639

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.