Share This Article:

RimJ-Catalyzed Sequence-Specific Protein N-Terminal Acetylation in Escherichia coli

Abstract Full-Text HTML XML Download Download as PDF (Size:6112KB) PP. 182-193
DOI: 10.4236/abb.2015.63018    4,284 Downloads   4,698 Views  


In order to establish the sequence dependence of RimJ-mediated protein N-terminal acetylation in E. coli, the Z-domain variants differing by the second or third amino acid residue were expressed and analyzed by mass spectrometry. Only subsequent to the initiating methionine residue cleavage, the RimJ-catalyzed N-terminal acetylation mainly occurred at the N-terminal serine and threonine residues and was significantly enhanced by hydrophobic or negatively charged residues in the penultimate position.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Perez, L. and Ryu, Y. (2015) RimJ-Catalyzed Sequence-Specific Protein N-Terminal Acetylation in Escherichia coli. Advances in Bioscience and Biotechnology, 6, 182-193. doi: 10.4236/abb.2015.63018.


[1] Walsh, C. (2006) Posttranslational Modification of Proteins: Expanding Nature’s Inventory. Roberts and Co. Publishers, Englewood.
[2] Waller, J.P. (1963) Nh2-Terminal Residues of Proteins from Cell-Free Extracts of E. coli. Journal of Molecular Biology, 7, 483-496.
[3] Arnold, R.J. and Reilly, J.P. (1999) Observation of Escherichia coli Ribosomal Proteins and Their Posttranslational Modifications by Mass Spectrometry. Analytical Biochemistry, 269, 105-112.
[4] Smith, V.F., Schwartz, B.L., Randall, L.L. and Smith, R.D. (1996) Electrospray Mass Spectrometric Investigation of the Chaperone SecB. Protein Science, 5, 488-494.
[5] Arai, K., Clark, B.F.C., Duffy, L., Jones, M.D., Kaziro, Y., Laursen, R.A., Litalien, J., Miller, D.L., Nagarkatti, S., Nakamura, S., Nielsen, K.M., Petersen, T.E., Takahashi, K. and Wade, M. (1980) Primary Structure of Elongation-Factor Tu from Escherichia coli. Proceedings of the National Academy of Sciences USA, 77, 1326-1330.
[6] Yoshikawa, A., Isono, S., Sheback, A. and Isono, K. (1987) Cloning and Nucleotide Sequencing of the Genes RimI and RimJ Which Encode Enzymes Acetylating Ribosomal-Proteins S18 and S5 of Escherichia coli K12. Molecular Genetics and Genomics, 209, 481-488.
[7] Tanaka, S., Matsushita, Y., Yoshikawa, A. and Isono, K. (1989) Cloning and Molecular Characterization of the Gene RimL Which Encodes an Enzyme Acetylating Ribosomal Protein L12 of Escherichia coli K12. Molecular Genetics and Genomics, 217, 289-293.
[8] Scott, D.C., Monda, J.K., Bennett, E.J., Harper, J.W. and Schulman, B.A. (2011) N-Terminal Acetylation Acts as an Avidity Enhancer within an Interconnected Multiprotein Complex. Science, 334, 674-678.
[9] Arnesen, T. (2011) Towards a Functional Understanding of Protein N-Terminal Acetylation. PLOS Biology, 9, e1001074.
[10] Andersen, J.L. and Kornbluth, S. (2011) Meeting the (N-Terminal) End with Acetylation. Cell, 146, 503-505.
[11] Hwang, C.S., Shemorry, A. and Varshavsky, A. (2010) N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals. Science, 327, 973-977.
[12] Van Doren, S.R., Wei, S., Gao, G., DaGue, B.B., Palmier, M.O., Bahudhanapati, H. and Brew, K. (2008) Inactivation of N-TIMP-1 by N-Terminal Acetylation When Expressed in Bacteria. Biopolymers, 89, 960-968.
[13] Luka, Z., Loukachevitch, L.V. and Wagner, C. (2008) Acetylation of N-Terminal Valine of Glycine N-Methyltransferase Affects Enzyme Inhibition by Folate. Biochimica et Biophysica Acta, 1784, 1342-1346.
[14] Jackson, C.L. (2004) N-Terminal Acetylation Targets GTPases to Membranes. Nature Cell Biology, 6, 379-380.
[15] Ogawa, H., Gomi, T., Takata, Y., Date, T. and Fujioka, M. (1997) Recombinant Expression of Rat Glycine N-Methyl-transferase and Evidence for Contribution of N-Terminal Acetylation to Cooperative Binding of S-Adenosylmethionine. Biochemical Journal, 327, 407-412.
[16] Urbancikova, M. and Hitchcock-DeGregori, S.E. (1994) Requirement of Amino-Terminal Modification for Striated Muscle Al-pha-Tropomyosin Function. The Journal of Biological Chemistry, 269, 24310-24315.
[17] Charbaut, E., Redeker, V., Rossier, J. and Sobel, A. (2002) N-Terminal Acetylation of Ectopic Recombinant Proteins in Escherichia coli. FEBS Letters, 529, 341-345.
[18] Honda, S., Asano, T., Kajio, T. and Nishimura, O. (1989) Escherichia coli-Derived Human Interferon-Gamma with Cys-Tyr-Cys at the N-Terminus Is Partially N Alpha-Acylated. Archives of Biochemistry and Biophysics, 269, 612-622.
[19] Wu, J., Chang, S., Gong, X., Liu, D. and Ma, Q. (2006) Identification of N-Terminal Acetylation of Recombinant Human Prothymosin Alpha in Escherichia coli. Biochimica et Biophysica Acta, 1760, 1241-1247.
[20] Grutter, M.G., Marki, W. and Walliser, H.P. (1985) Crystals of the Complex between Recombinant N-Acetyleglin c and Subtilisin—A Preliminary Characterization. The Journal of Biological Chemistry, 260, 1436-1437.
[21] Takao, T., Kobayashi, M., Nishimura, O. and Shimonishi, Y. (1987) Chemical Characterization of Recombinant Human Leukocyte Interferon A Using Fast Atom Bombardment Mass Spectrometry. The Journal of Biological Chemistry, 262, 3541-3547.
[22] Bariola, P.A., Russell, B.A., Monahan, S.J. and Stroop, S.D. (2007) Identification and Quantification of Nα-Acetylated Y. pestis Fusion Protein F1-V Expressed in Escherichia coli Using LCMSE. Journal of Biotechnology, 130, 11-23.
[23] Ren, Y., Yao, X., Dai, H., Li, S., Fang, H., Chen, H. and Zhou, C. (2011) Production of Nα-Acetylated Thymosin Alpha1 in Escherichia coli. Microbial Cell Factories, 10, 26.
[24] Fang, H.Q., Zhang, X., Shen, L., Si, X.X., Ren, Y.T., Dai, H.M., Li, S.L., Zhou, C.L. and Chen, H.P. (2009) RimJ Is Responsible for Nα-Acetylated of Thymosin Alpha 1 in Escherichia coli. Applied Microbiology and Biotechnology, 84, 99-104.
[25] Bernal-Perez, L.F., Sahyouni, F., Prokai, L. and Ryu, Y. (2012) RimJ-Mediated Context-Dependent N-Terminal Acetylation of the Recombinant Z-Domain Protein in Escherichia coli. Molecular BioSystems, 8, 1128-1130.
[26] Hirel, P.H., Schmitter, J.M., Dessen, P., Fayat, G. and Blanquet, S. (1989) Extent of N-Terminal Methionine Excision from Escherichia coli Proteins Is Governed by the Side-Chain Length of the Penultimate Amino-Acid. Proceedings of the National Academy of Sciences of the United States of America, 86, 8247-8251.
[27] Gentle, I.E., De Souza, D.P. and Baca, M. (2004) Direct Production of Proteins with N-Terminal Cysteine for Site-Specific Conjugation. Bioconjugate Chemistry, 15, 658-663.
[28] Polevoda, B. and Sherman, F. (2003) N-Terminal Acetyltransferases and Sequence Requirements for N-Terminal Acetylation of Eukaryotic Proteins. Journal of Molecular Biology, 325, 595-622.
[29] Falb, M., Aivaliotis, M., Garcia-Rizo, C., Bisle, B., Tebbe, A., Klein, C., Konstantinidis, K., Siedler, F., Pfeiffer, F., and Oesterhelt, D. (2006) Archaeal N-Terminal Protein Maturation Commonly Involves N-Terminal Acetylation: A Large-Scale Proteomics Survey. Journal of Molecular Biology, 362, 915-924.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.