Share This Article:

Antidiabetic Effects of Omega-3 Polyunsaturated Fatty Acids: From Mechanism to Therapeutic Possibilities

Abstract Full-Text HTML XML Download Download as PDF (Size:1378KB) PP. 190-200
DOI: 10.4236/pp.2015.63020    3,996 Downloads   4,844 Views   Citations

ABSTRACT

Diabetes mellitus (DM) is chronic disease characterized by hyperglycemia and insulin resistance caused by dysfunction of pancreatic β cells. Over the past few decades, epidemiological studies have suggested that dietary long-chain polyunsaturated fatty acids such as docosahexaenoic acid and eicosapentaenoic acid decrease the risk of metabolic diseases including DM. The mechanisms underlying the therapeutic efficacy of dietary long-chain polyunsaturated fatty acids in treating DM have been partly revealed. In this review, the authors describe the antidiabetic effects of long-chain polyunsaturated fatty acids and also discuss their possibilities as therapeutics for DM in the light of recent findings.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Iwase, Y. , Kamei, N. and Takeda-Morishita, M. (2015) Antidiabetic Effects of Omega-3 Polyunsaturated Fatty Acids: From Mechanism to Therapeutic Possibilities. Pharmacology & Pharmacy, 6, 190-200. doi: 10.4236/pp.2015.63020.

References

[1] World Health Organization (2015) Diabetes. Fact Sheet No. 312.
http://www.who.int/mediacentre/factsheets/fs312/en/
[2] American Diabetes Association (2012) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 35, S64-S71.
[3] de la Monte, S.M. and Wands, J.R. (2008) Alzheimer’s Disease is Type 3 Diabetes-Evidenced Review. Journal of Diabetes Science and Technology, 2, 1101-11138.
http://dx.doi.org/10.1177/193229680800200619
[4] Duarte, A.I., Candeias, E., Correia, S.C., et al. (2013) Crosstalk between Diabetes and Brain: Glucagon-Like Peptide-1 Mimetics as a Promising Therapy against Neurodegeneration. Biochimica et Biophysica Acta, 1832, 527-541.
[5] Janson, J., Laedtk, T., Parisi J.E., et al. (2004) Increases Risk of Type 2 Diabetes in Alzheimer’s Disease. Diabetes, 53, 474-481.
http://dx.doi.org/10.2337/diabetes.53.2.474
[6] Takalo, M., Haapasalo, A., Martiskainen, H., et al. (2014) High-Fat Diet Increases Tau Expression in the Brain of T2DM and AD Mice Independently of Peripheral Metabolic Status. Journal of nutritional Biochemistry, 25, 634-641.
http://dx.doi.org/10.1016/j.jnutbio.2014.02.003
[7] Freund, L.Y., Vedin, I., Cederholm, T., et al. (2014) Transfer of Omega-3 Fatty Acids across the Blood-Brain Barrier after Dietary Supplementation with a Docosahexaenoic Acid-Rich Omega-3 Fatty Acid Preparation in Patients with Alzheimer’s Disease: The OmegAD Study. Journal of International Medicine, 275, 428-436.
http://dx.doi.org/10.1111/joim.12166
[8] Weir, G.C., Laybutt, D.R., Kaneto, H., et al. (2001) Beta-Cell Adaptation and Decompensation during the Progression of Diabetes. Diabetes, 50, S154-S159.
http://dx.doi.org/10.2337/diabetes.50.2007.S154
[9] Kanda, H., Tateya, S., Tamori, Y., et al. (2006) MCP-1 Contributes to Macrophage Infiltration into Adipose Tissue, Insulin Resistance, and Hepatic Steatosis in Obesity. Journal of Clinical Investigation, 116, 1494-1505.
http://dx.doi.org/10.1172/JCI26498
[10] Kamei, N., Tobe, K., Suzuki, R., et al. (2006) Overexpression of Macrophage Chemoattractant Protein-1 in Adipose Tissue Cause Macrophage Recruitment and Insulin Resistance. The Journal of Biological Chemistry, 281, 26602-26614.
http://dx.doi.org/10.1074/jbc.M601284200
[11] Flachs, P., Horakova, O., Brauner P., et al. (2005) Polyunsaturated Fatty Acids of Marine Origin up Regulate Mitochondrial Biogenesis and Induce β-Oxidation in White Fat. Diabetologia, 48, 2365-2375.
http://dx.doi.org/10.1007/s00125-005-1944-7
[12] Vaughan, R.A., Garcia-Smith, R., Bisoffiet M., et al. (2012) Conjugated Linoleic Acid or Omega 3 Fatty Acids Increase Mitochondrial Biosynthesis and Metabolism in Skeletal Muscle Cells. Lipid in Health and Disease, 11, 142-152.
http://dx.doi.org/10.1186/1476-511X-11-142
[13] Weisberg, S.P., McCann, D., Desai, M., et al. (2003) Obesity Is Associated with Macrophage Accumulation in Adipose Tissue. Journal of Clinical Investigation, 112, 1796-1808.
http://dx.doi.org/10.1172/JCI200319246
[14] Xu, H., Barnes, G.T., Yang, Q., et al. (2003) Chronic Inflammation in Fat Plays a Crucial Role in the Development of Obesity-Related Insulin Resistance. Journal of Clinical Investigation, 112, 1821-1830.
http://dx.doi.org/10.1172/JCI200319451
[15] Lazar, M.A. (2006) The Humoral Side of Insulin Resistance. Nature Medicine, 12, 43-44.
http://dx.doi.org/10.1038/nm0106-43
[16] Sell, H. and Eckel, J. (2007) Monocyte Chemotactic Protein-1 and Its Role in Insulin Resistance. Current Opinion in Lipidology, 18, 258-262.
http://dx.doi.org/10.1097/MOL.0b013e3281338546
[17] Sell, H. and Eckel, J. (2009) Chemotactic Cytokines, Obesity and Type 2 Diabetes: In Vivo and in Vitro Evidence for a Possible Causal Correlation? Proceedings of the Nutrition Society, 68, 378-384.
http://dx.doi.org/10.1017/S0029665109990218
[18] Pimentel, G.D., Lira, F.S., Rosa, J.C., et al. (2013) High-Fat Fish Oil Diet Prevents Hypothalamic Inflammatory Profile in Rats. ISRN Inflammation, 2013, Article ID: 419823.
[19] Vandal, M., Alata, W., Tremblay, C., et al. (2014) Reduction in DHA Transport to the Brain of Mice Expressing Human APOE4 Compared to APOE2. Journal of Neurochemistry, 129, 516-526.
http://dx.doi.org/10.1111/jnc.12640
[20] Afshordel, S., Hagl, S., Werner, D., et al. (2015) Omega-3 Polyunsaturated Fatty Acids Improve Mitochondrial Dysfunction in Brain Aging—Impact of Bcl-2 and NPD-1 Like Metabolites. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 92, 23-31.
[21] Eckert, G.P., Chang, S., Eckmann, J., et al. (2011) Liposome-Incorporated DHA Increases Neuronal Survival by Enhancing Non-Amyloidogenic APP Processing. Biochimica et Biophysica Acta, 1808, 234-243.
[22] Wellhauser, L. and Belsham, D.D. (2014) Activation of the Omega-3 Fatty Acid Receptor GPR120 Mediates Anti-Inflammatory Actions in Immortalized Hypothalamic Neurons. Journal of Neuroinflammation, 27, 60.
http://dx.doi.org/10.1186/1742-2094-11-60
[23] Cintra, D.E., Ropelle, E.R., Moraes, J.C., et al. (2012) Unsaturated Fatty Acids Revert Diet-Induced Hypothalamic Inflammation in Obesity. PLoS ONE, 7, e30571.
http://dx.doi.org/10.1371/journal.pone.0030571
[24] Zhao, Y., Calon, F., Julien, C., et al. (2011) Docosahexaenoic Acid-Derived Neuroprotectin D1 Induces Neuronal Survival via Secretase- and PPARγ-Mediated Mechanisms in Alzheimer’s Disease Models. PLoS ONE, 6, e15816.
http://dx.doi.org/10.1371/journal.pone.0015816
[25] Wall, R., Ross, R.P., Fitzgerald, G.F. and Stanton, C. (2010) Fatty Acids from Fish: The Anti-Inflammatory Potential of Long-Chain Omega-3 Fatty Acids. Nutrition Reviews, 68, 280-289.
http://dx.doi.org/10.1111/j.1753-4887.2010.00287.x
[26] Bang, H.O. and Dyerberg, J. (1972) Plasma Lipids and Lipoproteins in Greenlandic West Coast Eskimos. Acta Medica Scandinavica, 192, 85-94.
http://dx.doi.org/10.1111/j.0954-6820.1972.tb04782.x
[27] Kromann, N. and Green, A. (1980) Epidemiological Studies in the Upernavik District, Greenland. Incidence of Some Chronic Diseases 1950-1974. Acta Medica Scandinavica, 208, 401-406.
http://dx.doi.org/10.1111/j.0954-6820.1980.tb01221.x
[28] Lim, G.E. and Brubaker, P.L. (2006) Glucagon-Like Peptide 1 Secretion by the L-Cell. The View from Within. Diabetes, 55, S70-S77.
http://dx.doi.org/10.2337/db06-S020
[29] Kieffer, T.J., McIntosh, C.H. and Pederson, R.A. (1995) Degradation of Glucose-Dependent Insulinotropic Polypeptide and Truncated Glucagon-Like Peptide 1 in Vitro and in Vivo by Dipeptidyl Peptidase IV. Endocrinology, 136, 3585-3596.
[30] Holst, J.J. (2006) Glucagon-Like Peptide-1: From Extract to Agent: The Claude Bernard Lecture, 2005. Diabetologia, 49, 253-260.
http://dx.doi.org/10.1007/s00125-005-0107-1
[31] Drucker, D.J., Jin, T., Asa, S.L., et al. (2006) Activation of Proglucagon Gene Transcription by Protein Kinase-A in a Novel Mouse Enteroendocrine Cell Line. Molecular Endocrinology, 8, 1646-1655.
[32] Abello, J., Ye, F., Bosshard, A., et al. (1994) Stimulation of Glucagon-Like Peptide-1 Secretion by Muscarinic Agonist in a Murine Intestinal Endocrine Cell Line. Endocrinology, 134, 2011-2017.
[33] Reimer, R.A., Darimont, C., Gremlich, S., et al. (2001) A Human Cellular Model for Studying the Regulation of Glucagon-Like Peptide-1 Secretion. Endocrinology, 142, 4522-4528.
http://dx.doi.org/10.1210/endo.142.10.8415
[34] Drucker, D.J. (2006) The Biology of Incretin Hormones. Cell Metabolism, 3, 153-165.
http://dx.doi.org/10.1016/j.cmet.2006.01.004
[35] Rocca, A.S. and Brubaker, P.L. (1999) Role of the Vagus Nerve in Mediating Proximal Nutrient-Induced Glucagon-Like Peptide-1 Secretion. Endocrinology, 140, 1687-1694.
[36] Roberge, J.N. and Brubaker, P.L. (1993) Regulation of Intestinal Proglucagon-Derived Peptide Secretion by Glucose-Dependent Insulinotropic Peptide in a Novel Enteroendocrine Loop. Endcrinology, 133, 233-240.
[37] Elrick, H., Stimmler, L., Hlad Jr., C.J. and Rai, Y. (1964) Plasma Insulin Responses to Oral and Intravenous Glucose Administration. Journal of Clinical Endocrinology Metabolism, 24, 1076-1082.
http://dx.doi.org/10.1210/jcem-24-10-1076
[38] Toft-Nielsen, M.B., Damholt, M.B., Madsbad, S., et al. (2001) Determinants of the Impaired Secretion of Glucagon-Like Peptide-1 in Type 2 Diabetic Patients. Journal of Clinical Endocrinology Metabolism, 86, 3717-3723.
http://dx.doi.org/10.1210/jcem.86.8.7750
[39] Vilsbøll, T., Krarup, T., Deacon, C.F., et al. (2001) Reduced Postprandial Concentrations of Intact Biologically Active Glucagon-Like Peptide 1 in Type 2 Diabetic Patients. Diabetes, 50, 609-613.
http://dx.doi.org/10.2337/diabetes.50.3.609
[40] Muscelli, E., Mari, A., Casolaro, A., et al. (2008) Separate Impact of Obesity and Glucose Tolerance on the Incretin Effect in Normal Subjects and Type 2 Diabetic Patients. Diabetes, 57, 1340-1348.
http://dx.doi.org/10.2337/db07-1315
[41] Vilsbøll, T., Agersø, H., Krarup, T. and Holst, J.J. (2003) Similar Elimination Rates of Glucagon-Like Peptide-1 in Obese Type 2 Diabetic Patients and Healthy Subjects. Journal of Clinical Endocrinology and Metabolism, 88, 220-224.
http://dx.doi.org/10.1210/jc.2002-021053
[42] Green, C.J., Henriksen, T.I., Pedersen, B.K. and Solomon, T.P. (2012) Glucagon Like Peptide-1-Induced Glucose Metabolism in Differentiated Human Muscle Satellite Cells Is Attenuated by Hyperglycemia. PLoS ONE, 7, e44284.
http://dx.doi.org/10.1371/journal.pone.0044284
[43] Sonoki, K., Iwase, M. Takata, Y., et al. (2013) Effect of Thirty-Times Chewing per Bite on Secretion of Glucagon-Like Peptide-11 in Health Volunteers and Type 2 Diabetic Patients. Endocrine Journal, 60, 311-319.
http://dx.doi.org/10.1507/endocrj.EJ12-0310
[44] Tsuchiya, M., Niijima-Yaoita, F., Yoneda, H., et al. (2014) Long-Term Feeding on Powdered Food Causes Hyperglycemia and Signs of Systemic Illness in Mice. Life Science, 103, 8-14.
http://dx.doi.org/10.1016/j.lfs.2014.03.022
[45] Yamazaki, T., Yamori, M., Asai, K., et al. (2013) Mastication and Risk for Diabetes in Japanese Population: A Cross-Sectional Study. PLoS ONE, 8, e4113.
http://dx.doi.org/10.1371/journal.pone.0064113
[46] Rocca, A.S. and Brubaker, P.L. (1995) Stereospecific Effects of Fatty Acids on Proglucagon-Derived Peptide Secretion in Fetal Rat Intestinal Cultures. Endocrinology, 136, 5593-5599.
[47] Brubaker, P.L., Schloos, J. and Drucker, D.J. (1998) Regulation of Glucagon-Like Peptide-1 Synthesis and Secretion in the GLUTag Enteroendocrine Cell Line. Endocrinology, 139, 4108-4114.
[48] Oh, D.Y., Talukdar, S., Bae, E.J., et al. (2010) GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-Inflammatory and Insulin-Sensitizing Effects. Cell, 142, 687-698.
http://dx.doi.org/10.1016/j.cell.2010.07.041
[49] Hirasawa, A., Tsumaya, K., Awaji, T., et al. (2005) Free Fatty Acids Regulate Gut Incretin Glucagon-Like Peptide-1 Secretion through GPR120. Nature Medicine, 11, 90-94.
http://dx.doi.org/10.1038/nm1168
[50] Katsuma, S., Hatae, N., Yano, T., et al. (2005) Free Fatty Acids Inhibit Serum Deprivation-Induced Apoptosis through GPR120 in a Murine Enteroendocrine Cell Line STC-1. Journal of Biological Chemistry, 280, 19507-19515.
http://dx.doi.org/10.1074/jbc.M412385200
[51] Adachi, T., Tanaka, T., Takemoto, K., et al. (2006) Free Fatty Acids Administrated into the Colon Promote the Secretion of Glucagon-Like Peptide-1 and Insulin. Biochemical and Biophysical Research Communications, 340, 332-357.
http://dx.doi.org/10.1016/j.bbrc.2005.11.162
[52] Morishita, M., Tanaka, T., Shida, T. and Takayama, K. (2008) Usefulness of Colon Targeted DHA and EPA as Novel Diabetes Medications That Promote Intrinsic GLP-1 Secretion. Journal of Controlled Release, 132, 99-104.
http://dx.doi.org/10.1016/j.jconrel.2008.09.001
[53] Shida, T., Kamei, N. and Takeda-Morishita, M. (2013) Colonic Delivery of Docosahexaenoic Acid Improves Impaired Glucose Tolerance via GLP-1 Secretion and Suppresses Pancreatic Islet Hyperplasia in Diabetic KK-Ay Mice. International Journal of Pharmacology, 450, 63-69.
http://dx.doi.org/10.1016/j.ijpharm.2013.04.029
[54] Morishita, M., Kajita, M., Suzuki, A., et al. (2000) The Dose-Related Hypoglycemic Effects of Insulin Emulsions Incorporating Highly Purified EPA and DHA. International Journal of Pharmacology, 201, 175-185.
http://dx.doi.org/10.1016/S0378-5173(00)00411-7
[55] Suzuki, A., Morishita, M., Kajita, M., et al. (1998) Enhanced Colonic and Rectal Absorption of Insulin Using a Multiple Emulsion Containing Eicosapentaenoic Acid and Docosahexaenoic Acid. Journal of Pharmaceutical Sciences, 87, 1196-1202.
http://dx.doi.org/10.1021/js980125q
[56] Andersen, G., Harnack, K., Erbersdobler, H.F. and Somoza, V. (2008) Dietary Eicosapentaenoic Acid and Docosahexaenoic Acid Are More Effective than Alpha-Linolenic Acid in Improving Insulin Sensitivity in Rats. Annals of Nutrition and Metabolism, 52, 250-256.
http://dx.doi.org/10.1159/000140518
[57] Ichimura, A., Hirasawa, A., Poulain-Godefroy, O., et al. (2012) Dysfunction of Lipid Sensor GPR120 Leads to Obesity in Both Mouse and Human. Nature, 483, 350-354.
http://dx.doi.org/10.1038/nature10798
[58] Oh, D.Y., Walenta, E., Akiyama, T.E., et al. (2014) A GPR120-Selective Agonist Improves Insulin Resistance and Chronic Inflammation in Obese Mice. Nature Medicine, 20, 942-947.
http://dx.doi.org/10.1038/nm.3614
[59] Luan, B., Zhao, J., Wu, H., et al. (2009) Deficiency of A Beta-Arrestin-2 Signal Complex Contributes to Insulin Resistance. Nature, 457, 1146-1149.
http://dx.doi.org/10.1038/nature07617
[60] Spencer, M., Finlin, B.S., Unal, R., et al. (2013) Omega-3 Fatty Acids Reduce Adipose Tissue Macrophages in Human Subjects with Insulin Resistance. Diabetes, 62, 1709-17171.
http://dx.doi.org/10.2337/db12-1042
[61] de Caterina, R., Madonna, R., Bertolotto, A. and Schmidt, E.B. (2007) N-3 Fatty Acids in the Treatment of Diabetic Patients. Diabetes Care, 30, 1012-1026.
http://dx.doi.org/10.2337/dc06-1332
[62] Labonté, M.è., Couture, P., Tremblay, A.J., Hogue, J.C., Lemelin, V. and Lamarche, B. (2013) Eicosapentaenoic and Docosahexaenoic Acid Supplementation and Inflammatory Gene Expression in the Duodenum of Obese Patients with Type 2 Diabetes. Nutrition Journal, 12, 98.
http://dx.doi.org/10.1186/1475-2891-12-98
[63] Brookheart, R.T., Michel, C.T. and Schaffer, J.F. (2009) As a Matter of Fat. Cell Metabolism, 10, 9-12.
http://dx.doi.org/10.1016/j.cmet.2009.03.011
[64] Xu, J., Teran-Garcia, M., Park, J.H., et al. (2001) Polyunsaturated Fatty Acids Suppress Hepatic Sterol Regulatory Element-Binding Protein-1 Expression by Accelerating Transcript Decay. Journal of Biological Chemistry, 276, 9800-9807.
http://dx.doi.org/10.1074/jbc.M008973200
[65] Xu, J., Nakamura, M.T., Cho, H.P. and Clarke, S.D. (2007) Sterol Regulatory Element Binding Protein-1 Expression Is Suppressed by Dietary Polyunsaturated Fatty Acids. Journal of Biological Chemistry, 274, 23577-23583.
http://dx.doi.org/10.1074/jbc.274.33.23577
[66] Liu, X., Xue, Y., Liu, C., et al. (2013) Eiocasapentaenoic Acid-Enriched Phospholipid Ameliorates Insulin Resistance and Lipid Metabolism in Diet-Induced-Obese Mice. Lipid in Health and Disease, 12, 109.
http://dx.doi.org/10.1186/1476-511X-12-109
[67] Neschen, S., Morino, K., Dong, J., et al. (2007) N-3 Fatty Acids Preserve Insulin Sensitivity in Vivo in a Peroxisome Proliferator-Activated Receptor-α-Dependent Manner. Diabetes, 56, 1034-1041.
http://dx.doi.org/10.2337/db06-1206
[68] Wu, J.H., Cahill, L.E. and Mozaffarian, D. (2013) Effects of Fish Oil on Circulating Adiponectin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Endocrinology and Metabolism, 98, 2451-2459.
http://dx.doi.org/10.1210/jc.2012-3899
[69] Flachs, P., Mohamed-Ali, V. and Horakova, O. (2006) Polyunsaturated Fatty Acids of Marine Origin Induce Adiponectin in Mice Fed a High-Fat Diet. Diabetologia, 49, 394-397.
http://dx.doi.org/10.1007/s00125-005-0053-y
[70] Banga, A., Unal, R., Tripathi, P., et al. (2009) Adiponectin Translation Is Increased by the PPARgamma Agonist Pioglitazone and Omega-3 Fatty Acids. American Journal of Physiology, Endocrinology and Metabolism, 296, E480-E489.
http://dx.doi.org/10.1152/ajpendo.90892.2008
[71] Tishinsky, J.M., Ma, D.W. and Robinson, L.F. (2011) Eicosapentaenoic Acid and Rosiglitazone Increase Adiponectin in an Additive and PPARγ-Dependent Manner in Human Adipocytes. Obesity, 19, 262-268.
http://dx.doi.org/10.1038/oby.2010.186
[72] World Health Organization. Diabetes Programme [Article Online].
http://www.who.int/diabetes/action_online/basics/en/index3.html
[73] Sawada, N., Jiang, A., Takizawa, F., et al. (2014) Endothelial PGC-1α Mediates Vascular Dysfunction in Diabetes. Cell Metabolism, 19, 246-258.
http://dx.doi.org/10.1016/j.cmet.2013.12.014
[74] Cao, L., Aran, P.R., Kim, J., et al. (2010) Modulating Notch Signaling to Enhance Neovascularization and Reperfusion in Diabetic Mice. Biomaterials, 31, 9048-9056.
http://dx.doi.org/10.1016/j.biomaterials.2010.08.002
[75] Bryner, R.W., Woodworth-Hobbs, M.E., Williamson, D.L. and Always, S.E. (2012) Docosahexaenoic Acid Protects Muscle Cells from Palmitate-Induced Atrophy. ISRN Obesity, 2012, Article ID: 647348.
[76] Virtanen, J.K., Mursu, J., Voutilainen, S., Uusitupa, M. and Tuomainen, T.P. (2014) Serum Omega-3 Polyunsaturated Fatty Acids and Risk of Incident Type 2 Diabetes in Men: The Kuopio Ischemic Heart Disease Risk Factor Study. Diabetes Care, 37, 1189-1196.
http://dx.doi.org/10.2337/dc13-1504
[77] Iwasaki, M., Hoshian, F., Tsuji, T., et al. (2012) Predicting Efficacy of Dipeptidyl Peptidase-4 Inhibitors in Patients with Type 2 Diabetes: Association of Glycated Hemoglobin Reduction with Serum Eicosapentaenoic Acid and Docosahexaenoic Acid Levels. Journal of Diabetes Investigation, 3, 464-467.
http://dx.doi.org/10.1111/j.2040-1124.2012.00214.x
[78] Samimi, M., Jamilian, M., Asemi, Z. and Esmaillzadeh, A. (2014) Effects of Omega-3 Fatty Acid Supplementation on Insulin Metabolism and Lipid Profiles in Gestational Diabetes: Randomized, Double-Blind, Placebo-Controlled Trial. Clinical Nutrition, in press.
[79] Serhiyenko, V., Serhiyenko, A. and Segin, V. (2014) The Effect of Omega-3 Polyunsaturated Fatty Acids on N-Terminal Pro-Brain Natriuretic Peptide and Lipid Concentration in Patients with Type 2 Diabetes Mellitus and Cardiovascular Autonomic Neuropathy. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 21, 97-101.
http://dx.doi.org/10.2478/rjdnmd-2014-0014

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.