Share This Article:

Studies on the Effect of the Capping Materials on the Spherical Gold Nanoparticles Catalytic Activity

Abstract Full-Text HTML Download Download as PDF (Size:2562KB) PP. 51-61
DOI: 10.4236/wjnse.2011.12008    9,769 Downloads   20,010 Views   Citations

ABSTRACT

Size-controlled gold nanoparticles (AuNPs) were prepared in the presence of different capping materials (sodium citrate, cetyltrimethylammonium bromide (CTAB), and chitosan). The results obtained suggest that the AuNPs were synthesized with different particle size, which is controlled by changing the molar ratio between sodium citrate, (CTAB), and chitosan to Au (III). The catalytic activities of the AuNPs with different capping materials were studied for 4-nitrophenol reduction by NaBH4 as a model reaction. AuNPs with different capping materials is comparable from the value of the apparent rate constant of 4-nitrophenol reduction (0.6 × 10–3, 1.9 × 10–3, and 2.4 × 10–3 s–1) for sodium citrate, CTAB and chitosan. From the results, it is concluded that, AuNPs catalyzed the electron transfer process between and nitro compounds with all the capping materials used AuNPs capped by chitosan were more active for the reduction than the other two.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Seoudi and D. Said, "Studies on the Effect of the Capping Materials on the Spherical Gold Nanoparticles Catalytic Activity," World Journal of Nano Science and Engineering, Vol. 1 No. 2, 2011, pp. 51-61. doi: 10.4236/wjnse.2011.12008.

References

[1] T. Xu, N. Zhang, H.L. Nichols, D.L. Shi, X.J. Wen, “Modification of nanostructured materials for biomedical applications” Mater. Sci. Eng. Vol. C 27, 2007, pp. 579- 594.
[2] K. Xu, J. Huang, Z. Ye, Y. Ying, and Y. Li “Recent Development of Nano-Materials Used in DNA Biosensors”, Sensors Vol. 9, 2009, pp.5534-5557
[3] A. Józefczak, A. Skumiel “Ultrasonic investigation of magnetic nanoparticles suspension with PEG biocompatible coating”, Journal of Magnetism and Magnetic Materials, Vol. 323, 2011, pp. 1509-1516
[4] S. Thangavel, R. Ramaraj “Electroless synthesis of multibranched gold nanostructures encapsulated by poly(o-phenylenediamine) in Nafion” Journal of Colloid and Interface Science, Vol. 355, 2011, pp. 293-299
[5] R. Güzel, Z. üstünda?, H. Ek?i, S. Keskin, B. Taner, Z. G. Durgun, A. A. Turan, A. O. Solak “Effect of Au and Au@Ag core–shell nanoparticles on the SERS of bridging organic molecules” Journal of Colloid and Interface Science, Vol. 351, 2010, pp.35-42
[6] O. Estévez-Hernández, E.M. Molina-Trinidad, P. Santiago-Jacinto, L. Rendón, E. Reguera “Gold nanoparticles conjugated to benzoylmercaptoacetyltriglycine and l-cysteine methylester” Journal of Colloid and Interface Science, Vol. 350, 2010, pp. 161-167
[7] J. Wang, W. De Zhang “Sputtering deposition of gold nanoparticles onto vertically aligned carbon nanotubes for electroanalysis of uric acid” Journal of Electroanalytical Chemistry, Vol. 654, 2011, pp.79-84
[8] L. Wang, F. Montagne, P. Hoffmann, H. Heinzelmann, R. Pugin “Hierarchical positioning of gold nanoparticles into periodic arrays using block copolymer nanoring templates”, Journal of Colloid and Interface Science, Vol. 356, 2011, pp.496-504
[9] I. H. Hsu, W. H. Chen, T. K. Wu, Y. C. Sun “Gold nanoparticle-based inductively coupled plasma mass spectrometry amplification and magnetic separation for the sensitive detection of a virus-specific RNA sequence”, Journal of Chromatography A, Vol. 1218, 2011, pp. 1795-1801
[10] Z. Guo, X. Fan, L. Liu, Z. Bian, C. Gu, Y. Zhang, N. Gu, D. Yang, J. Zhang “Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms” Journal of Colloid and Interface Science, Vol. 348, 2010, pp. 29-36
[11] S. Nath, S. Jana, M. Pradhan, T.Pal “Ligand-stabilized metal nanoparticles in organic solvent” Journal of Colloid and Interface Science, Vol. 341, 2010, pp. 333-352
[12] J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, G. Rosa, J. Hong, J. L. Torresdey “Nanomaterials and the environment: A review for the biennium 2008-2010” Journal of Hazardous Materials, Vol. 186, 2011, pp. 1-15
[13] E. Falletta, F. Ridi, E. Fratini, C. Vannucci, P. Canton, S. Bianchi, V. Castelvetro, P. Baglioni “A tri-block copolymer templated synthesis of gold nanostructures” Journal of Colloid and Interface Science, Vol. 357, 2011, pp. 88-94
[14] Y. C. Lin, B. Y. Yu, W. C. Lin, S. H. Lee, C. H. Kuo, J. J. Shyue “Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups” Journal of Colloid and Interface Science, Vol. 340, 2009, pp. 126-130
[15] W. K. Lee, S. H. Cha, K. H. Kim, B. W. Kim, J. C. Lee “Shape-controlled synthesis of gold icosahedra and nanoplates using Pluronic P123 block copolymer and sodium chloride”, Journal of Solid State Chemistry, Vol. 182, 2009, pp.3243-3248
[16] C. Contado, R. Argazzi “Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation” Journal of Chromatography A, Vol. 1216, 2009, pp. 9088-9098
[17] J. P. Douliez, B. Novales, C. Gaillard “Synthesising gold nanoparticles within bola fatty acid nanosomes”, Journal of Colloid and Interface Science, Vol. 337, 2009, pp. 610-613
[18] S.I. Stoeva A.B. Smetana, C.M. Sorensen, K.J. Klabunde, “Gram Scale Synthesis of Aqueous Gold Colloids Stabilized by Various Ligands”,, Jour. Colloid and Interface Science, Vol. 309, 2007, pp. 94-98
[19] Y. Sun, C. Lei “Synthesis of Out-of-Substrate Au-Ag Nanoplates with Enhanced Stability for Catalysis”, Angew. Chem. Int. Ed., Vol. 48, 2009, pp. 6824-6827.
[20] N Yan, J Zhang, Y. Yuan, G. T. Chen, P. J. Dyson, Z. C. Li, Y. Kou, “Thermoresponsive polymers based on poly-vinylpyrrolidone: applications in nanoparticle catalysis” Chem Commun (Camb). Vol. 46, 2010, pp. 1631- 1633.
[21] S. S. Kinge, M. C. Calama, D. N. “Gold Nanoparticle Assemblies through Hydrogen-Bonded Supramolecular Mediators. Langmuir, Vol, 17, 2007, pp. 8772-8777
[22] S. S. Kumar, C. S. Kumar, J. Mathiyarasu, K. L. Phani “Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis”, Langmuir. Vol. 23, 2007, pp. 3401-3408.
[23] M. Montalti, L. Prodi, N. Zaccheroni, M. Beltrame, T. Morotti, and S. Quici, “Stabilization of Gold Nanoparticles by Metal Ions Complexation”, New J. Chem., Vol. 31, 2007, pp.102-108
[24] N. Nilius, M. V. Ganduglia-Pirovano, V. Brázdová, M. Kulawik, J. Sauer, and H-J. Freund “Electronic properties and charge state of gold monomers and chains adsorbed on alumina thin films on NiAl(110)”, Phys. Rev. B , Vol. 81, 2010, pp, 45422-45429.
[25] M. Tayyeb Javed, Naseem Irfan, B.M. Gibbs,”Control of combustion-generated nitrogen oxides by selective non-catalytic reduction”, Journal of Environmental Management, Vol. 83, 2007, pp. 251-289.
[26] E. J. Beckman;”Supercritical and near-critical CO2 in green chemical synthesis and processing” The Journal of Supercritical Fluids, Vol. 28, 2004, pp. 121-191.
[27] M. Sahimi and T. T. Tsotsis,” A percolation model of catalyst deactivation by sit coverage and pore blockage” Journal of Catalysis, 1985, pp. 552-562.
[28] R.R. Melkote and K.F. Jensen,“ Models for catalytic pore plugging, application to hydrodemetallation,” Chem. Eng. Sci., Vol. 44,1989, pp. 649-663
[29] G. C. Bond,” Gold: a relatively new catalyst” Catalysis Today, Vol.72, 2002, pp. 5-9
[30] G. J. Hutchings,“Nanocrystalline gold catalysts: A reflection on catalyst discovery and the nature of active sites” Gold Bulletin,Vol. 42,4 2009, pp. 260-266.
[31] P. T. Anastas and J. C. Warner, “Green Chemistry: Theory and Practice, Oxford University Press, 1998, New York).
[32] X. G. Zhang, D. Y. Teng, Z. M. Wu, X. Wang, Z. Wang, D. M. Yu, C. X. Li, “PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release”J Mater Sci Mater Med. Vol. 19, 2008, pp. 3525-3533.
[33] A. S. Karikari, W. F. Edwards, J. B. Mecham, T. E. Long, “Influence of peripheral hydrogen bonding on the mechanical properties of photo-cross-linked star-shaped poly(D,L-lactide) networks, Biomacromol, Vol.6, 2005, pp.2866-2874.
[34] R. Song, R. Xuea, L. He, Y. Liu and Q. Xiao,”The structure and properties of chitosan/polyethylene glycol/silica ternary hybrid organic-inorganic films” Chinese Journal of Polymer Science Vol. 26, 2008, pp. 621-630
[35] J. G. Rouse and M. E. Van Dyke, “A Review of Keratin-Based Biomaterials for Biomedical Applications” Materials, Vol. 3, 2010, pp. 999-1014
[36] M. Bodnar, J. F. Hartmann, and J. Borbely,” Synthesis and Study of Cross-Linked Chitosan-N-Poly(ethylene glycol) Nanoparticles” Biomacromolecules, Vol. 7, 2006, pp. 3030-3036
[37] K. Esumi, N. Takei, T. Yoshimura, “Antioxidant-poten- tiality of gold–chitosan nanocomposites”, Colloids Surf B. Biointerface, Vol. 32, pp. 117-123.
[38] S. Wunder, F. Polzer, Y. Lu, Y. Mei and M. Ballauff,” Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes” J. Phys. Chem. C, Vol. 114, 2010, pp. 8814-8820.
[39] M. Haruta, “Catalysis of gold nanoparticles deposited on metal oxides” CATTECH, Vol. 6, 2002, 102-115.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.