Using the Electromagnetics of Cancer’s Centrosome Clusters to Attract Therapeutic Nanoparticles


This paper summarizes recent research findings concerning centrioles, centriole duplication, centriole overduplication, supernumerary centrioles, centrosomes, and centrosome amplification. The paper then discusses the status of ongoing research on the use of nanoparticles for cancer treatment. The research findings show that a centriole produces an electromagnetic field apparently due to the longitudinal oscillation of its microtubules (MTs). A cluster of centrioles is therefore presumed to produce an enhanced electromagnetic field. Individual centrioles are immersed in a cloud of electron-dense material (proteins) which together with the centrioles is known as the centrosome. A cluster of centrioles thus produces a cluster of centrosomes—a hallmark of cancer cells. With enhanced electromagnetic fields, centrosome clusters provide an attraction for magnetically charged nanoparticles. These nanoparticles however are not attracted to normal cells which with only two (or at most four) centrioles, have a weaker magnetic field. The idea is simple: Magnetized and therapeutic nanoparticles are directed toward tumors and then attracted to the centrosome clusters of the tumor cells. Once inside the tumor cells, the nanoparticles can release their toxins.

Share and Cite:

Huston, R. (2015) Using the Electromagnetics of Cancer’s Centrosome Clusters to Attract Therapeutic Nanoparticles. Advances in Bioscience and Biotechnology, 6, 172-181. doi: 10.4236/abb.2015.63017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Huston, R.L. (2014) On Centrioles, Microtubules, and Cellular Electromagnetism. Journal of Nanotechnology in Engineering in Medicine, 5, 031003-1-031003-5.
[2] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D. (1994) Molecular Biology of the Cell. 3rd Edition, Garland Publishing, New York, Vol. 18, 803-818.
[3] Duensing, A., Liu, Y., Perdreau, S.A., Kleylein-Sohn, J., Nigg, E.G. and Duensing, S. (2007) Centriole Overduplication through the Concurrent Formation of Multiple Daughter Centrioles at Single Material Templates. Nature Oncogene, 26, 5280-6288.
[4] Schöeckel, L., Möeckel, M., Mayer, B., Boos, D. and Stemmann, O. (2011) Cleavage of Cohesion Rings Coordinates the Separation of Centrioles and Chromatids. Nature Cell Biology, 13, 966-972.
[5] Nigg, E.A. and Raft, J.W. (2009) Centrioles, Centrosomes, and Cilia in Health and Disease. Cell, 139, 663-678.
[6] Kobayashi, T. and Dynlacht, B.D. (2011) Regulating the Transition from Centriole to Basal Body. Journal of Cell Biology, 193, 435-444.
[7] Gansen, N.J., Godinho, S.A. and Pellman, D. (2009) A Mechanism Linking Extra Centrosomes to Chromosomal Instability. Nature, 460, 278-282.
[8] Nigg, E.A. (2002) Centrosome Aberrations: Cause or Consequence of Cancer Progression? Nature Reviews Cancer, 2, 815-825.
[9] Duensing, A., Liu, Y., Perdreau, S.A., Kleylein-Sohn, J., Nigg, E.A. and Duensing, S. (2007) Centriole Overduplication through the Concurrent Formation of Multiple Daughter Centrioles at Single Material Templates. Oncogene, 26, 6280-6288.
[10] Korzeniwski, N., Hohenfellner, M. and Duensing, S. (2012) CANDI Promotes PLK4-Mediated Centriole Overduplication and is Frequently Disrupted in Prostate Cancer. Neoplasia, 14, 799-806.
[11] Nigg, E.A. (2006) Origins and Consequences of Centrosome Aberrations in Human Cancers. International Journal of Cancer, 119, 2717-2723.
[12] Godinho, S.A., Kwan, M. and Pellman, D. (2009) Centrosomes and Cancer: How Cancer Cells Divide with Too Many Centrosomes. Cancer and Metastasis Reviews, 28, 85-98.
[13] Sluder, G. and Nordberg, J.J. (2004) The Good, the Bad and the Ugly: The Practical Consequences of Centrosome Amplification. Current Opinion in Cell Biology, 16, 49-54.
[14] Brinkley, B.R. (2001) Managing the Centrosome Numbers Game: From Chaos to Stability in Cancer Cell Division. Trends in Cell Biology, 11, 18-21.
[15] D’Assoro, A.B., Lingle, W.L. and Salisbury, J.L. (2002) Centrosome Amplification and the Development of Cancer. Oncogene, 21, 6146-6153.
[16] Tsou, M.F. and Sterns, T. (2006) Mechanism Limiting Centrosome Duplication to Once Per Cell Cycle. Nature, 442, 947-951.
[17] Bettencourt-Dias, M. and Glover, D.M. (2009) SnapShot: Centriole Biogenesis. Cell, 136, 188.e1-188.e2.
[18] Loffler, H., Fechter, A., Liu, F.Y., Poppelreuther, S. and Kramer, A. (2013) DNA Damage-Induced Centrosome Amplification Occurs via Excessive Formation of Centriolar Satellites. Oncogene, 32, 2963-2972.
[19] Vitre, B.D. and Cleveland, D.W. (2012) Centrosomes, Chromosomes Instability (CIN) and Aneuploidy. Current Opinion in Cell Biology, 24, 809-815.
[20] Nigg, E.A. and Sterns, T. (2011) The Centrosome Cycle: Centriole Biogenesis, Duplication and Inherent Asymmetries. Nature Cell Biology, 13, 1154-1160.
[21] Lingle, W.L., Barrett, S.L., Negron, V.C., D’Assoro, A.B., Boeneman, K., Liu, W., et al. (2002) Centrosome Amplification Drives Chromosomal Instability in Breast Tumor Development. Proceedings of the National Academy of Sciences of the United States of America, 99, 1978-1983.
[22] Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D.M. and Bettencourt-Dias, M. (2008) From Centriole Biogenesis to Cellular Function: Centrioles Are Essential for Cell Division at Critical Developmental Stages. Cell Cycle, 7, 11-16.
[23] Kramer, A., Neben, K. and Ho, A.D. (2002) Centrosome Replication, Genomic Instability, and Cancer. Leukemia, 16, 767-775.
[24] Ganem, N.J., Godinho, S.A. and Pellman, D. (2009) A Mechanism Linking Extra Centrosomes to Chromosomal Instability. Nature, 460, 278-282.
[25] Vulprecht, J., David, A., Tibelius, A., Castiel, A., Konotop, G., Liu, F.Y., et al. (2012) STIL Is Required for Centriole Duplication in Human Cells. Journal of Cell Science, 125, 1353-1362.
[26] Kwon, M., Godinho, S.A., Chandhok, N.S., Ganem, N.J., Azioune, A., Thery, M. and Pellman, D. (2008) Mechanisms to Suppress Multipolar Divisions in Cancer Cells with Extra Chromosomes. Genes & Development, 22, 2189-2203.
[27] Phian, G.A., Wallace, J., Zhou, Y. and Doxsey, S.J. (2003) Centrosome Abnormalities and Chromosome Instability Occur Together in Pre-Invasive Carcinomas. Cancer Research, 63, 1398-1404.
[28] Holland, A.J., Lan, W., Niessen, S., Hoover, H. and Cleveland, D.W. (2010) Polo-Like Kinase 4 Kinase Activity Limits Centrosome Overduplication by Autoregulating Its Own Stability. The Journal of Cell Biology, 188, 191-198.
[29] Lingle, W.L. and Salisbury, J.L. (1999) The Role of the Centrosome in the Development of Malignant Tumors. Current Topics in Developmental Biology, 49, 313-329.
[30] Goepfert, T.M., Adigun, Y.E., Zhong, L., Gay, J., Medina, D. and Brinkley, W.R. (2002) Centrosome Amplification and Overexpression of Aurora A Are Early Events in Rat Mammary Carcinogenesis. Cancer Research, 62, 4115-4122.
[31] Marx, J. (2001) Do Centrosome Abnormalities Lead to Cancer? Science, 292, 426-429.
[32] Marthiens, V., Rujano, M.A., Pennetier, C., Tessier, S., Paul-Gilloteaux, P. and Basto, R. (2013) Centrosome Amplification Causes Microcephaly. Nature Cell Biology, 15, 731-740.
[33] Maiato, H. and Logarinho, E. (2014) Mitotic Spindle Multipolarity without Centrosome Amplifications. Nature Cell Biology, 16, 386-394.
[34] Lingle, W.L. and Salisbury, J.L. (1999) Altered Centrosome Structure Is Associated with Abnormal Mitoses in Human Breast Tumors. American Journal of Pathology, 155, 1941-1951.
[35] Yang, Z., Loncarek, J., Khodjakov, A. and Rieder, C.L. (2008) Extra Centrosomes and/or Chromosomes Prolong Mitosis in Human Cells. Nature Cell Biology, 10, 748-751.
[36] Leber, B., Maier, B., Fuchs, F., Chi, J., Riffel, P., Anderhub, S., et al. (2010) Proteins Required for Centrosome Clustering in Cancer Cells. Science Translational Medicine, 2, 33-38.
[37] Pinhan, G.A., Purohit, A., Wallace, J., Knecht, H., Woda, B., Quesenberry, P. and Doxsey, S.J. (1998) Centrosome Defects and Genetic Instability in Malignant Tumors. Cancer Research, 58, 3974-3985.
[38] Lingle, W.L., Kutz, W.H., Ingle, J.N., Maible, N.J. and Salisbury, J.L. (1998) Centrosome Hypertrophy in Human Breast Tumors: Implications for Genomic Stability and Cell Polarity. Proceedings of the National Academy of Sciences of the United States of America, 95, 2950-2955.
[39] Bornens, M. (2008) Organelle Positioning and Cell Polarity. Nature Reviews Molecular Cell Biology, 9, 874-886.
[40] Fukasawa, K. (2007) Oncogenes and Tumor Suppressors Take on Centrosomes. Nature Reviews Cancer, 7, 911-924.
[41] Azimzadeh, J. and Marshall, W.F. (2010) Building the Centriole. Current Biology, 20, R816-R825.
[42] Meggs, W.J. (1988) Electric Fields Deforming the Spatial Organization of Microtubules and Action Filaments. Medical Hypotheses, 26, 165-170.
[43] Kucera, O. and Havelka, D. (2012) Mechano-Electrical Vibrations of Microtubules—Link to Subcellular Morphology. Biosystems, 109, 346-355.
[44] Tyner, K.M., Kopelman, R. and Philbert, M. (2007) “Nanosized Voltmeter” Enables Cellular-Wide Electric Field Mapping. Biophysical Journal, 93, 1163-1174.
[45] Zhao, Y. and Zhan, Q. (2012) Electric Oscillation and Coupling of Chromatics Regulate Chromosome Packaging and Transcription in Eukaryotic Cells. Theoretical Biology and Medical Modelling, 9, 27-38.
[46] Brown, J.A. and Tuszynski, J.A. (1999) A Review of the Ferroelectric Model of Microtubules. Ferroelectrics, 220, 141-155.
[47] Pokorny, J. (2011) Electrodynamic Activity of Healthy and Cancer Cells. 19th International Fröhlick’s Symposium, Journal of Physics: Conference Series, 329, Paper No. 012007.
[48] Cifro, M., Havelka, D. and Kucera, O. (2010) Electric Oscillations Generated by Collective Vibration Modes of Microtubules. In: Kinnamen, M. and Myllyla, R., Eds., Laser Applications in Life Sciences, Proceedings of SPIE, Vol. 7376.
[49] Pokorny, J., Hasek, J., Vanis, J. and Jelinek, F. (2008) Biophysical Aspects of Cancer—Electromagnetic Mechanism. Indian Journal of Experimental Biology, 46, 310-321.
[50] Pokorny, J., Hasek, J. and Jelinek, F. (2005) Electromagnetic Field of Microtubules: Effects on Transfer of Mass Particles and Electrons. Journal of Biological Physics, 31, 501-514.
[51] Pokorny, J., Pokorny, J. and Kobikova, J. (2013) Postulates on Electromagnetic Activity in Biological Systems and Cancer. Integrative Biology, 5, 1439-1446.
[52] Cifra, M., Pokorny, J., Havelka, D. and Kucera, O. (2010) Electric Field Generated by Axial Longitudinal Vibration Modes of Microtubule. Biosystems, 100, 122-131.
[53] Pokorny, J., Hasek, J. and Jelinek, F. (2005) Endogenous Electric Field and Organization of Living Matter. Electromagnetic Biology and Medicine, 24, 185-197.
[54] Tsai, M.C. and Ahringer, J. (2007) Microtubules Are Involved in Anterior-Posterior Axis Formation in C. elegans Embryos. Journal of Cell Biology, 179, 397-402.
[55] McKean, P.G., Vaughan, S. and Gull, K. (2001) The Extended Tubulin Superfamily. Journal of Cell Science, 114, 2723-2733.
[56] Tassin, A.M. and Bornens, M. (1999) Centrosome Structure and Microtubule Nucleation in Animal Cells. Biology of the Cell, 91, 343-354.
[57] Raynaud-Messina, B. and Merdes, A. (2007) γ-Tubulin Complexes and Microtubule Organization. Current Opinion in Cell Biology, 19, 24-30.
[58] McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M. (2005) Controlling Cell Behavior Electrically: Current Views and Future Potential. Physiological Reviews, 85, 943-978.
[59] Cuzick, J., Holland, R., Barth, V., Davies, R., Faupel, M., Fentiman, I., Frischbier, H.J., LaMarque, J.L., Merson, M., Sacchini, V., Vanel, D. and Veronesi, U. (1998) Electropotential Measurements as a New Diagnostic Modality for Breast Cancer. The Lancet, 352, 359-363.
[60] Djamqoz, M.B.A., Mycielska, M., Madeja, Z., Fraser, S.P. and Korohoda, W. (2001) Directional Movement of Rat Prostate Cancer Cells in Direct-Current Electric Field: Involvement of Voltagegated Na+ Channel Activity. Journal of Cell Science, 114, 2697-2705.
[61] Mycielska, M.E. and Djamqoz, M.B.A. (2004) Cellular Mechanisms of Direct-Current Electric Field Effects: Galvanotaxis and Metastatic Disease. Journal of Cell Science, 117, 1631-1639.
[62] Zhoo, M., Bai, H., Wang, E., Forrester, J.V. and McCaig, C.D. (2003) Electrical Stimulation Directly Induces Pre-Angiogenic Responses in Vascular Endothelia Cells by Signaling through VEGF Receptors. Journal of Cell Science, 117, 397-405.
[63] Olivotto, M., Arcanqeli, A., Carla, M. and Wanke, E. (1996) Electric Fields at the Plasma Membrane Level: A Neglected Element in the Mechanism of Cell Signaling. BioEssays, 18, 495-504.
[64] Davies, R.J., Joseph, R., Asbun, H. and Sedwitz, M. (1989) Detection of the Cancer-Prone Colon, Using Transepithelial Impedence Analysis. JAMA Surgery, 124, 480-484.
[65] Binggeli, R. and Weinstein, R.C. (1986) Membrane Potentials and Sodium Channels: Hypotheses for Growth Regulation and Cancer Formation Based on Changes in Sodium Channels and Gap Junctions. Journal of Theoretical Biology, 123, 377-401.
[66] Garci-Bennett, A., Hess, M. and Fadeel, B. (2011) In Search of the Holy Grail: Folate-Targeted Nanoparticles for Cancer Therapy. Biochemical Pharmacology, 81, 976-984.
[67] Ridley, A. and Heald, R. (2011) Cell Structure and Dynamics—Editorial Overview. Current Opinion in Cell Biology, 23, 1-3.
[68] Kim, D.H., Rozhkova, E.A., Ulasov, I.V., Bader, S.D., Rajh, T., Lesniak, M.S. and Novosad, V. (2010) Biofunctionalized Magentic-Vortex Microdiscs for Targeted Cancer-Cell Destruction. Nature Materials, 9, 165-171.
[69] Dobson, J. (2008) Remote Control of Cellular Behavior with Magnetic Nanoparticles. Nature Nanotechnology, 3, 139-143.
[70] Nogales, E., Whittaker, M., Milligan, R.A. and Downing, K.H. (1999) High-Resolution Model of the Microtubule. Cell, 96, 79-88.
[71] Mannix, R.J., Kumar, S., Cassiola, F., Montoya-Zavala, M., Feinstein, E., Prentiss, M. and Inber, D.E. (2007) Nanomagnetic Actuation of Receptor-Mediated Signal Transduction. Nature Nanotechnology, 3, 36-40.
[72] Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M. and von Rechenberg, B. (2005) Superparamagnetic Nanoparticles for Biomedical Applications: Possibilities and Limitations of a New Drug Delivery System. Journal of Magnetism and Magnetic Materials, 293, 483-496.
[73] Weng, F., Pauletti, G.M., Wang, J., Zhang, J., Ewing, R.C., Wang, Y. and Shi, D. (2013) Dual Surface-Functionalized Janus Nanocomposites of Polystyrene/Fe3O4@SiO2 for Simultaneous Tumor Cell Targeting and Stimulus-Induced Drug Release. Advanced Materials, 25, 3485-3489.
[74] Shi, D., Bedford, N.M. and Cho, H.S. (2011) Engineered Multifunctional Nanocarriers for Cancer Diagnosis and Therapeutics. Small, 7, 2549-2567.
[75] Chow, E.K.H. and Ho, D. (2013) Cancer Nanomedicine: From Drug Delivery to Imaging. Science Translational Medicine, 5, 216rv4.
[76] Pouponneau, P., Leroux, J.C., Soulez, G., Gaboury, L. and Martel, S. (2011) Co-Encapsulation of Magnetic Nanoparticles and Doxorubicin into Biodegradable Microcarriers for Deep Tissue Targeting by Vascular MRI Navigation. Biomaterials, 32, 3481-3486.
[77] Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q.Z., Chen, X. and Dai, H. (2008) Drug Delivery with Carbon Nanotubes for in Vivo Cancer Treatment. Cancer Research, 68, 6652-6660.
[78] von Maltzahn, G., Park, J.H., Lin, K.Y., Singh, N., Schwöppe, C., Mesters, R., Berdel, W.E., Ruoslahti, W., Sailor, M.J. and Bhatia, S.N. (2011) Nanoparticles that Communicate in Vivo to Amplify Tumour Targeting. Nature Materials, 10, 545-552.
[79] Fonseca, N.A., Gregó, A.C., Valério-Fernandes, A., Simões, S. and Moreira, J.N. (2014) Bridging Cancer Biology and the Patient’s Needs with Nanotechnology-Based Approaches. Cancer Treatment Reviews, 40, 626-635.
[80] Avvakumova, S., Colombo, M., Tortoya, P. and Prosperi, D. (2014) Biotechnological Approaches toward Nanoparticle Biofunctionalization. Trends in Biotechnology, 32, 11-20.
[81] Pokorny, J., Vedruccio, C., Cifra, M. and Kucera, O. (2011) Cancer Physics: Diagnostics Based on Damped Cellular Elastoelectrical Vibrations in Microtubules. European Biophysics Journal, 40, 747-759.
[82] Sonnen, K.F., Schmellen, L., Leonhardt, H. and Nigg, E.A. (2012) 3D-Structured Illumination Microscopy Provides Novel Insight into Architecture of Human Centrosomes. Biology Open, 1, 965-976.
[83] Azimzadeh, J. and Bornens, M. (2007) Structure and Duplication of the Centrosome. Journal of Cell Science, 120, 2139-2142.
[84] Habedanek, R., Stierhof, Y.D., Wilkinson, C.J. and Nigg, E.A. (2005) The Polo Kinase Plk4 Functions in Centriole Duplication. Nature Cell Biology, 7, 1140-1146.
[85] Baffet, A.D., Martin, C.A., Scarfone, I., Daly, O.M., David, A., Tibelius, A., Lattao, R., Hussain, M.S. and Woodruff, J.B. (2013) Meeting Report—Building a Centrosome. Journal of Cell Science, 126, 3259-3262.
[86] Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L., Gatt, M.K., Carmo, N., Balloux, F., Callainj, G. and Glover, D.M. (2005) SAK/PLK4 Is Required for Centriole Duplication and Flagella Development. Current Biology, 15, 2199-2207.
[87] Brownlee, C.W. and Rogers, G.C. (2013) Show Me Your License, Please: Deregulation of Centriole Duplication Mechanisms that Promote Amplification. Cellular and Molecular Life Sciences, 70, 1021-1034.
[88] Marthiens, V., Piel, M. and Basto, R. (2012) Never Tear Us Apart—The Importance of Centrosome Clustering. Journal of Cell Science, 125, 3281-3292.
[89] Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D.M. and Bettencourt-Dias, M. (2007) Revisiting the Role of the Mother Centriole in Centriole Biogenesis. Science, 316, 1046-1050.
[90] Bettencourt-Dias, M. and Glover, D.M. (2007) Centrosome Biogenesis and Function: Centrosomics Brings New Understanding. Nature Reviews Molecular Cell Biology, 8, 451-463.
[91] Strnad, P. and Gonczy, P. (2008) Mechanisms of Procentriole Formation. Trends in Cell Biology, 18, 389-396.
[92] van Breugel, M., Hirono, M., Andreeva, A., Yanagisawa, H.A., Yamaguchi, S., Nakazawa, Y., Morgner, N., Petrovich, M., Ebong, I.O., Robinson, C.V., Johnson, C.M., Veprintsev, D. and Zuber, B. (2011) Structures of SAS-6 Suggest Its Organization in Centrioles. Science, 331, 1196-1199.
[93] Fukasawa, K. (2005) Centrosome Amplifications, Chromosome Instability and Cancer Development. Cancer Letters, 230, 6-19.
[94] Chan, J.Y. (2011) A Clinical Overview of Centrosome Amplification in Human Cancers. International Journal of Biological Sciences, 7, 1122-1144.
[95] Kawamura, K., Izumi, H., Ma, Z., Ikeda, R., Moriyama, M., Tanaka, T., Nojima, T., Levin, L.S., Fujikawa-Yamamoto, K., Suzuki, K. and Fukasawa, K. (2004) Induction of Centrosome Amplification and Chromosome Instability in Human Bladder Cancer Cells by p53 Mutation and Cyclin E Overexpression. Cancer Research, 64, 4800-4809.
[96] Sato, N., Mizumoto, K., Nakamura, M., Ueno, H., Minamishima, Y.A., Farber, J.L. and Tanaka, M. (2000) A Possible Role for Centrosome Overduplication in Radiation-Induced Cell Death. Oncogene, 19, 5281-5290.
[97] Kasbek, C., Yang, C.H., Uysof, A.M., Chapman, H.M., Winey, M. and Fink, H.A. (2007) Preventing the Degradation of Mps1 at Centrosomes Is Sufficient to Cause Centrosome Reduplication in Human Cells. Molecular Biology of the Cell, 18, 4457-4469.
[98] Loncarek, J., Herget, P. and Khodjakou, A. (2010) Centriole Reduplication during Prolonged Interphase Requires Procentriole Maturation Governed by Plk1. Current Biology, 20, 1277-1282.
[99] Bettencourt-Dias, M., Hildebrandt, F., Pellman, D., Woods, G. and Godinho, S.A. (2011) Centrosomes and Cilia in Human Disease. Trends in Genetics, 27, 307-315.
[100] Bianco, A., Kostarelos, K. and Prato, M. (2005) Applications of Carbon Nanotubes in Drug Delivery. Current Opinion in Chemical Biology, 9, 674-679.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.