Nitrogen and Organic Matter Mineralization in the Tunisian Cork Oak Forest: A Laboratory Study

Abstract

The mineralization of the organic matter is a very important phenomenon which leads to the release of nutriments used by plants. The rate of transformation of the organic matter depends on several factors and parameters such as climatic factors and biological and physicochemical properties of the soil and the litter. In this study, we investigate the effect of the addition of litter of various species as well as the effect of soil moisture on mineralization of organic matter and on mineral nitrogen release in three soils sampled in three cork oak stands during a period of 41 days under the same laboratory conditions. Carbon mineralization was determined using CO2 respiration method, whereas the mineral nitrogen content was measured at the last day of incubation both in soil samples with added plant leaf material, and in control soil samples without addition under two treatments of moisture (40% and 80% WHC—water holding capacity). Our results show that the addition of leaf litter causes an increase in the microbial activity. Soils without addition were significantly different from the plant leaf added soils in respect to carbon mineralization at the end of the incubation period. Moreover, it is noted that the mineralization of carbon is more marked with moisture at 80% than that of 40%, contrary to that of the nitrogen, which is not influenced by the variation of moisture.

Share and Cite:

Ikbel, Z. , Chaabane, A. , Wided, O. , Foued, H. , Brahim, H. and Samira, S. (2015) Nitrogen and Organic Matter Mineralization in the Tunisian Cork Oak Forest: A Laboratory Study. Open Journal of Forestry, 5, 287-295. doi: 10.4236/ojf.2015.53025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Adams, M. A., & Atwill, P. M. (1982). Nitrogen Mineralization and Nitrate Reduction in Forests. Soil Biology and Biochemistry, 14, 197-202.
http://dx.doi.org/10.1016/0038-0717(82)90023-2
[2] Aerts, R. (1997). Climate, Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial Ecosystems: A Triangular Relationship. Oikos, 79, 439-449.
[3] Aerts, R., & De Caluwe, H. (1997). Initial Litter Respiration as Indicator for Long-Term Leaf Litter Decomposition of Carex Species. Oikos, 80, 353-361.
http://dx.doi.org/10.2307/3546603
[4] Aka, H., & Darici, C. (2005). Carbon and Nitrogen Mineralization in Carob Soils with Kermes Oak and Aleppo Pine Leaf Litter. Soil Biology, 41, 31-38.
[5] Azzalini, A., & Diggle, P. (1993). Prediction of Soil Respiration Rates from Temperature, Moisture Content and Soil Type. J. STOR, Applied Statistics, 43, 505-526.
[6] Berg B., Mc Claugherty, C., De Santo, A. V. et al. (2001). Johnson, Humus Buildup in Boreal Forests: Effects of Litter Fall and Its N Concentration. Canadian Journal of Forest Research, 31, 988-998.
http://dx.doi.org/10.1139/x01-031
[7] Berg, B., Staaf, H.,Wessen, B., & Ekbohm, G. (1982). Nitrogen Level and Decomposition in Scots Pine Needle Litter. Oikos, 38, 291-396.
http://dx.doi.org/10.2307/3544667
[8] Griffin, D. M. (1981). Water and Microbial Stress. Advances in Microbial Ecology, 5, 91-136.
[9] Grundmann, G. L., Renault, P., Rosso, L., & Bardin, R. (1995). Differential Effects of Soil Water Content and Temperature on Nitrification and Aeration. Soil Science Society of America Journal, 59, 1342-1349.
http://dx.doi.org/10.2136/sssaj1995.03615995005900050021x
[10] Hasnaoui, B. (1992). Chênaies du Nord de la Tunisie, Ecologie et Régénération. Doctorat d’état es-Sciences Naturelles, Univ de Provence Aix Marseille I, 186 p.
[11] Heal, O. W., Anderson, J. M., & Swift, M. J. (1997). Plant Litter Quality and Decomposition: An Historical Overview. In G. Cadisch, & K. E. Giller (Eds.), Driven by Nature: Plant Litter Quality and Decomposition (pp. 3-30). Wallingford: CAB International.
[12] Kurz, D. C., Couteaux, M. M., & Thiéry, J. M. (2000). Residence Time and Decomposition Rate of Pinus Pinaster Needles in a Forest Floor from Direct Field Measurements under a Mediterranean Climate. Soil Biology and Biochemistry, 32, 1197-1206.
http://dx.doi.org/10.1016/S0038-0717(00)00036-5
[13] Mary, B., Recous, S., Darwis, D., & Robin, D. (1996). Interactions between Decomposition of Plant Residues and Nitrogen Cycling in Soil. Plant and Soil, 181, 71-82.
http://dx.doi.org/10.1007/BF00011294
[14] McTiernan, K. B., Couteaux, M. M., Berg, B., Berg, M. P., de Anta, R. C. et al. (2003). Changes in Chemical Composition of Pinus sylvestris Needle Litter during Decomposition along a European Coniferous Forest Climate Transect. Soil Biology and Biochemistry, 35, 801-812.
http://dx.doi.org/10.1016/S0038-0717(03)00107-X
[15] Melillo, J. M., Aber, J. D., & Muratore, J. F. (1982). Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics. Ecology, 63, 621-626.
http://dx.doi.org/10.2307/1936780
[16] N’Dayegamiye, A. (2007). La contribution en azote du sol reliée à la minéralisation de la matière organique: Facteur climatique et régies agricoles influencant les taux de minéralisation d’azote. Colloque sur l’azote, CRAAQ-OAQ.
[17] Osono, T., & Takeda, H. (2005). Limit Values for Decomposition and Convergence Process of Lignocellulose Fraction in Decomposing Leaf Litter of 14 Tree Species in a Cool Temperate Forest. Ecological Research, 20, 51-58.
http://dx.doi.org/10.1007/s11284-004-0011-z
[18] Papendick, R. I., & Campbell, G. S. (1981). Theory and Measurement of Water Potential. L.F, 1-22.
[19] Raiesi, F. (2006). Carbon and N Mineralization as Affected by Soil Cultivation and Crop Residue in a Calcareous Wetland Ecosystem in Central Iran. Agriculture, Ecosystems & Environment, 112, 13-20.
http://dx.doi.org/10.1016/j.agee.2005.07.002
[20] Richards, B. N. (1987). The Microbiology of Terrestrial Ecosystems (p. 399). Harlow: Longman.
[21] Salamanca, E. F., Kaneko, N., & Katagiri, S. (1998). Effects of Leaf Litter Mixtures on the Decomposition of Quercus serrata and Pinus densiflora Using field and Laboratory Microcosm Methods. Ecological Engineering, 10, 53-73.
http://dx.doi.org/10.1016/S0925-8574(97)10020-9
[22] Selmi, M. (1985). Différenciation des sols et fonctionnement des écosystèmes forestiers sur grés numidien de Kroumirie (Tunisie). Ecologie de la Subéraie-Zeenaie. Doctorat d’état es-Sciences Naturelles, Univ de Nancy I, 200 p.
[23] Silver, W. L., & Miya, R. K. (2001). Global Patterns in Root Decomposition: Comparisons of Climate and Litter Quality Effects. Oecologia, 129, 407-419.
http://dx.doi.org/10.1007/s004420100740
[24] Swift, M. J., Heal, O., & Anderson, J. (1979). Decomposition in Terresterial Ecosystems (Studies in Ecology 5, p. 372). Oxford: Blackwell Scientific Publication.
[25] Taylor, B. R., Parkinson, D., & Parsons, W. F. J. (1989). Nitrogen and Lignin Content as Predictors of Litter Decay Rates: A Microcosm Test. Ecology, 70, 97-104.
http://dx.doi.org/10.2307/1938416
[26] Teklay, T., Nordgren, A., Nyberg, G., & Malmer, A. (2007). Carbon Mineralization of Leaves from Four Ethiopian Agroforestry Species under Laboratory and Field Conditions. Applied Soil Ecology, 35, 193-202.
http://dx.doi.org/10.1016/j.apsoil.2006.04.002
[27] Uhlirova, E., Elhottova, D., Triska, J., & Santruckova, H. (2005). Physiology and Microbial Community Structure in Soil at Extreme Water Content. Folia Microbiologica, 50, 161-166.
http://dx.doi.org/10.1007/BF02931466
[28] Van Wesemael, B. (1993). Litter Decomposition and Nutrient Distribution in Humus Profiles in Some Mediterranean Forests in Southern Tuscany. Forest Ecology and Management, 57, 99-114.
http://dx.doi.org/10.1016/0378-1127(93)90165-J

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.