[1]
|
Adams, M. A., & Atwill, P. M. (1982). Nitrogen Mineralization and Nitrate Reduction in Forests. Soil Biology and Biochemistry, 14, 197-202. http://dx.doi.org/10.1016/0038-0717(82)90023-2
|
[2]
|
Aerts, R. (1997). Climate, Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial Ecosystems: A Triangular Relationship. Oikos, 79, 439-449.
|
[3]
|
Aerts, R., & De Caluwe, H. (1997). Initial Litter Respiration as Indicator for Long-Term Leaf Litter Decomposition of Carex Species. Oikos, 80, 353-361. http://dx.doi.org/10.2307/3546603
|
[4]
|
Aka, H., & Darici, C. (2005). Carbon and Nitrogen Mineralization in Carob Soils with Kermes Oak and Aleppo Pine Leaf Litter. Soil Biology, 41, 31-38.
|
[5]
|
Azzalini, A., & Diggle, P. (1993). Prediction of Soil Respiration Rates from Temperature, Moisture Content and Soil Type. J. STOR, Applied Statistics, 43, 505-526.
|
[6]
|
Berg B., Mc Claugherty, C., De Santo, A. V. et al. (2001). Johnson, Humus Buildup in Boreal Forests: Effects of Litter Fall and Its N Concentration. Canadian Journal of Forest Research, 31, 988-998. http://dx.doi.org/10.1139/x01-031
|
[7]
|
Berg, B., Staaf, H.,Wessen, B., & Ekbohm, G. (1982). Nitrogen Level and Decomposition in Scots Pine Needle Litter. Oikos, 38, 291-396. http://dx.doi.org/10.2307/3544667
|
[8]
|
Griffin, D. M. (1981). Water and Microbial Stress. Advances in Microbial Ecology, 5, 91-136.
|
[9]
|
Grundmann, G. L., Renault, P., Rosso, L., & Bardin, R. (1995). Differential Effects of Soil Water Content and Temperature on Nitrification and Aeration. Soil Science Society of America Journal, 59, 1342-1349. http://dx.doi.org/10.2136/sssaj1995.03615995005900050021x
|
[10]
|
Hasnaoui, B. (1992). Chênaies du Nord de la Tunisie, Ecologie et Régénération. Doctorat d’état es-Sciences Naturelles, Univ de Provence Aix Marseille I, 186 p.
|
[11]
|
Heal, O. W., Anderson, J. M., & Swift, M. J. (1997). Plant Litter Quality and Decomposition: An Historical Overview. In G. Cadisch, & K. E. Giller (Eds.), Driven by Nature: Plant Litter Quality and Decomposition (pp. 3-30). Wallingford: CAB International.
|
[12]
|
Kurz, D. C., Couteaux, M. M., & Thiéry, J. M. (2000). Residence Time and Decomposition Rate of Pinus Pinaster Needles in a Forest Floor from Direct Field Measurements under a Mediterranean Climate. Soil Biology and Biochemistry, 32, 1197-1206. http://dx.doi.org/10.1016/S0038-0717(00)00036-5
|
[13]
|
Mary, B., Recous, S., Darwis, D., & Robin, D. (1996). Interactions between Decomposition of Plant Residues and Nitrogen Cycling in Soil. Plant and Soil, 181, 71-82. http://dx.doi.org/10.1007/BF00011294
|
[14]
|
McTiernan, K. B., Couteaux, M. M., Berg, B., Berg, M. P., de Anta, R. C. et al. (2003). Changes in Chemical Composition of Pinus sylvestris Needle Litter during Decomposition along a European Coniferous Forest Climate Transect. Soil Biology and Biochemistry, 35, 801-812. http://dx.doi.org/10.1016/S0038-0717(03)00107-X
|
[15]
|
Melillo, J. M., Aber, J. D., & Muratore, J. F. (1982). Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics. Ecology, 63, 621-626. http://dx.doi.org/10.2307/1936780
|
[16]
|
N’Dayegamiye, A. (2007). La contribution en azote du sol reliée à la minéralisation de la matière organique: Facteur climatique et régies agricoles influencant les taux de minéralisation d’azote. Colloque sur l’azote, CRAAQ-OAQ.
|
[17]
|
Osono, T., & Takeda, H. (2005). Limit Values for Decomposition and Convergence Process of Lignocellulose Fraction in Decomposing Leaf Litter of 14 Tree Species in a Cool Temperate Forest. Ecological Research, 20, 51-58. http://dx.doi.org/10.1007/s11284-004-0011-z
|
[18]
|
Papendick, R. I., & Campbell, G. S. (1981). Theory and Measurement of Water Potential. L.F, 1-22.
|
[19]
|
Raiesi, F. (2006). Carbon and N Mineralization as Affected by Soil Cultivation and Crop Residue in a Calcareous Wetland Ecosystem in Central Iran. Agriculture, Ecosystems & Environment, 112, 13-20. http://dx.doi.org/10.1016/j.agee.2005.07.002
|
[20]
|
Richards, B. N. (1987). The Microbiology of Terrestrial Ecosystems (p. 399). Harlow: Longman.
|
[21]
|
Salamanca, E. F., Kaneko, N., & Katagiri, S. (1998). Effects of Leaf Litter Mixtures on the Decomposition of Quercus serrata and Pinus densiflora Using field and Laboratory Microcosm Methods. Ecological Engineering, 10, 53-73. http://dx.doi.org/10.1016/S0925-8574(97)10020-9
|
[22]
|
Selmi, M. (1985). Différenciation des sols et fonctionnement des écosystèmes forestiers sur grés numidien de Kroumirie (Tunisie). Ecologie de la Subéraie-Zeenaie. Doctorat d’état es-Sciences Naturelles, Univ de Nancy I, 200 p.
|
[23]
|
Silver, W. L., & Miya, R. K. (2001). Global Patterns in Root Decomposition: Comparisons of Climate and Litter Quality Effects. Oecologia, 129, 407-419. http://dx.doi.org/10.1007/s004420100740
|
[24]
|
Swift, M. J., Heal, O., & Anderson, J. (1979). Decomposition in Terresterial Ecosystems (Studies in Ecology 5, p. 372). Oxford: Blackwell Scientific Publication.
|
[25]
|
Taylor, B. R., Parkinson, D., & Parsons, W. F. J. (1989). Nitrogen and Lignin Content as Predictors of Litter Decay Rates: A Microcosm Test. Ecology, 70, 97-104. http://dx.doi.org/10.2307/1938416
|
[26]
|
Teklay, T., Nordgren, A., Nyberg, G., & Malmer, A. (2007). Carbon Mineralization of Leaves from Four Ethiopian Agroforestry Species under Laboratory and Field Conditions. Applied Soil Ecology, 35, 193-202. http://dx.doi.org/10.1016/j.apsoil.2006.04.002
|
[27]
|
Uhlirova, E., Elhottova, D., Triska, J., & Santruckova, H. (2005). Physiology and Microbial Community Structure in Soil at Extreme Water Content. Folia Microbiologica, 50, 161-166. http://dx.doi.org/10.1007/BF02931466
|
[28]
|
Van Wesemael, B. (1993). Litter Decomposition and Nutrient Distribution in Humus Profiles in Some Mediterranean Forests in Southern Tuscany. Forest Ecology and Management, 57, 99-114. http://dx.doi.org/10.1016/0378-1127(93)90165-J
|