Production of Carbon Nanotubes by Different Routes-A Review
Muhammad Musaddique Ali Rafique, Javed Iqbal
.
DOI: 10.4236/jeas.2011.12004   PDF    HTML     15,365 Downloads   34,056 Views   Citations

Abstract

Carbon Nanotubes are one the most important materials of future. Discovered in 1991, they have reached a stage of attracting the interests of many companies world wide for their large scale production. They possess remarkable electrical, mechanical, optical, thermal and chemical properties, which make them a perfect “fit” for many engineering applications. In this paper various methods of production of carbon nanotubes are discussed outlining their capabilities, efficiencies and possible exploitation as economic large scale production methods. Chemical vapor disposition (CVD) is proposed as a potential method for economic large scale production of carbon nanotubes due to its relative simplicity of operation, process control, energy efficiency, raw materials used, capability to scale up as large unit operation, high yield and purity.

Share and Cite:

M. Rafique and J. Iqbal, "Production of Carbon Nanotubes by Different Routes-A Review," Journal of Encapsulation and Adsorption Sciences, Vol. 1 No. 2, 2011, pp. 29-34. doi: 10.4236/jeas.2011.12004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. J. Harris, “Carbon Nanotubes and Related Structures,” Cambridge University Press, Cambridge, 1999. doi:10.1017/CBO9780511605819
[2] M. S. Dresselhaus, G. Dresselhaus and P. C. Ecklund, “Science of Fullerenes and Carbon Nanotubes,” Associated Press, New York, 1996.
[3] A. Oberlin, M. Endo and T. Koyama, “Filamentous Growth of Carbon through Benzene Decomposition,” Journal of Crystal Growth, Vol. 32, No. 3, 1976, pp. 335-349. doi:10.1016/0022-0248(76)90115-9
[4] http://carbon.phys.msu.ru/publications/1952-radushkevich-lukyanovich.pdf radushkevich-lukyanovich, 1952. (original article in russian)
[5] millie-science-spec-endo99.tex
[6] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354 1991, p. 56-58. doi:10.1038/354056a0
[7] S. Iijima, T. Ichihashi, “Single-Shell Carbon Nanotubes of 1-Nm Diameter,” Nature, Vol. 363, 1993, pp. 603-605. doi:10.1038/363603a0
[8] D. S. Bethune, C. H. Kiang, M. S. De Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, “Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls,” Nature, Vol. 363, 1993, pp. 605-607. doi:10.1038/363605a0
[9] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, “Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization,” Chemical Physics Letters, Vol. 243, No. 1-2, 1995, pp. 49-54. doi:10.1016/0009-2614(95)00825-O
[10] M. J. Yacaman, M. M. Yoshida, L. Rendon and J. G. Santiesteban, “Catalytic Growth of Carbon Microtubules with Fullerene Structure,” Applied Physics Letters, Vol. 62, No. 2, 1993, pp. 202-204. doi:10.1063/1.109315
[11] W. S. Mcbride, “Synthesis of Carbon Nanotube by Chemical Vapor Deposition,” Undergraduate Degree Thesis, College of William and Marry in Virginia, Williamsburg, 2001.
[12] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy De La Chapelle, S. Lefrant, P. Deniard, R. Lee and J.E. Fischer, “Large Scale Production of Single Walled Carbon Nanotubes by the Electric Arc Technique,” Nature, Vol. 388, 1997, pp. 756-758. doi:10.1038/41972
[13] T. W. Ebbesen, P. M. Ajayan, “Large Scale Synthesis of Carbon Nanotubes,” Nature, Vol. 358, 1992, pp. 220-222. doi:10.1038/358220a0
[14] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, “Large Scale Synthesis of Aligned Carbon Nanotubes,” Science, Vol. 274, No. 5293, 1996, pp. 1701-1703. doi:10.1126/science.274.5293.1701
[15] J. Cumings, W. Mickelson and A. Zettl, “Simplified Synthesis of Double Wall Carbon Nanotubes,” Solid State Communications, Vol. 126, No. 6, 2003, pp. 359-362. doi:10.1016/S0038-1098(02)00881-5
[16] C. P. Deck, G. S. B. Mckee and K. S. Vecchio, “Synthesis Optimization & Characterization of Multi Walled Carbon Nanotubes,” Journal of Electronic Materials, Vol. 35, No. 2, 2006, pp. 211-223.
[17] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith and R. E. Smalley, “Gas Phase Catalytic Growth of Single-Walled Carbon Nanotubes from Carbon Monoxide,” Chemical Physics Letters, Vol. 313, No. 1-2, 1999, pp. 91-97. doi:10.1016/S0009-2614(99)01029-5
[18] Z. K. Tang, L. Zhang, N. Wang, X. X. Zhang, G. H. Wen and G. D. Li, “Superconductivity in 4 Angstrom Single Walled Carbon Nanotubes,” Science, Vol. 292, No. 5526, 2001, pp. 2462-2465. doi:10.1126/science.1060470
[19] D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan and A. Borgna, “A Scalable Process for Production of Single-Walled Carbon Nanotubes (Swnts) by Catalytic Disproportionation of Co on A Solid Catalyst,” Journal of Nanoparticle Research, Vol. 4, No. 1-2, 2002, pp. 31-136. doi:10.1023/A:1020174126542
[20] National Aeronautics and Space Administration (NASA), NASA’s Goddard Space Flight Center, Report, 2005.
[21] G. Kaptay and J. Sytchev, University of Miskolc, Unpublished Report (2005).
[22] V. Wal, L. Randall, L. J. Hall and G. M. Berger, “Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst,” Journal of Physical Chemistry B, Vol. 106, No. 51, 2002, pp. 13122-13132. doi:10.1021/jp020614l
[23] V. Wal, L. Randall and T.M. Ticich, “Flame and Furnace Synthesis of Single-Walled and Multi-Walled Carbon Nanotubes and Nanofibers,” Journal of Physical Chemistry B, Vol. 105, No. 42, 2001, pp. 10249-10256. doi:10.1021/jp012838u

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.