[1]
|
Soleymani, F. (2012) Computer-Aided Prediction of Physical and Mechanical Properties of High Strength Concrete Containing Fe2O3 Nanoparticles. The Journal of American Science, 8, 338-345.
|
[2]
|
Tyson, B., Abu Al-Rub, R., Yazdanbakhsh, A. and Grasley, Z. (2011) Carbon Nanotubes and Carbon Nanofibers for Enhancing the Mechanical Properties of Nanocomposite Cementitious Materials. Journal of Materials in Civil Engineering, 23, 1-8.
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000266
|
[3]
|
Al-Salami, A.E., Al-Assiri, M.S., Al-Hajry, A., Ahmed, M.A. and Taha, S. (2007) The Effect of Curing Time and Porosity on the Microstructure Hydrated Products in Some Blended Cement Pastes. Silicate Industrial, 72, 163.
|
[4]
|
Khoshakhlagh, A., Nazari, A. and Khalaj, G. (2012) Effects of Fe2O3 Nanoparticles on Water Permeability and Strength Assessments of High Strength Self-Compacting Concrete. Journal of Materials Science Technology, 28, 73-82.
http://dx.doi.org/10.1016/S1005-0302(12)60026-7
|
[5]
|
Nazari, A. and Riahi, S. (2010) The Effects of ZrO2 Nanoparticles on Physical and Mechanical Properties of High Strength Self Compacting Concrete. Materials Research, 13, 551-556.
http://dx.doi.org/10.1590/S1516-14392010000400019
|
[6]
|
Nazari, A., Riahi, S., Shamekhi, S. and Khademno, A. (2010) The Effects of Incorporation Fe2O3 Nanoparticles on Tensile and Flexural Strength of Concrete. The Journal of American Science, 6, 90-93.
|
[7]
|
Nazari, A. and Riahi, S. (2011) Effects of CuO Nanoparticles on Compressive Strength of Self-Compacting Concrete. Indian Academy of Sciences, 36, 371-391.
|
[8]
|
Chung, D.D.L. (2004) Cement-Matrix Structural Nanocomposites. Metals and Materials, 10, 55-67.
http://dx.doi.org/10.1007/BF03027364
|
[9]
|
British Standard Institution, BS 12 (1996) Specifications for Portland Cement. BSI, London.
|
[10]
|
Ahmed, M.A., Bishay, S.T. and El-Dek, S.I. (2012) Characteristics of Dy2.8Sr0.2Fe5O12 Garnet (DySrIG). The European Physical Journal Applied Physics, 59, Article No. 20401.
http://dx.doi.org/10.1051/epjap/2012110465
|
[11]
|
Ahmed, M.A., Okasha, N. and El-Dek, S.I. (2008) Preparation and Characterization of Nanometric Mn Ferrite via Different Methods. Nanotechnology, 19, 6.
http://dx.doi.org/10.1088/0957-4484/19/6/065603
|
[12]
|
ASTM C39 (2001) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM, Philadelphia.
|
[13]
|
Abell, A., Willis, K. and Lange, D. (1999) Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials. Journal of Colloid and Interface Science, 211, 39.
http://dx.doi.org/10.1006/jcis.1998.5986
|
[14]
|
Tanaka, K. and Kurumisawa, K. (2002) Development of Technique for Observing Pores in Hardened Cement Paste. Cement and Concrete Research, 32, 1435.
http://dx.doi.org/10.1016/S0008-8846(02)00806-2
|
[15]
|
Yazdi, N., Arefi, M., Mollaahmadi, E. and Nejand, B. (2011) To Study the Effect of Adding Fe2O3 Nanoparticles on the Morphology Properties and Microstructure of Cement Mortar. Life Science Journal, 8.
|
[16]
|
Li, H., Zhang, M.H. and Ou, J.P. (2006) Abrasion Resistance of Concrete Containing Nano-Particles for Pavement. Wear, 260, 1262-1266.
http://dx.doi.org/10.1016/j.wear.2005.08.006
|
[17]
|
Meng, T., Yu, Y., Qian, X., Zhan, S. and Qian, K. (2012) Effect of Nano-TiO2 on the Mechanical Properties of Cement Mortar. Construction and Building Materials, 29, 241-245.
http://dx.doi.org/10.1016/j.conbuildmat.2011.10.047
|