Understanding the Importance of Dopaminergic Deficit in Reward Deficiency Syndrome (RDS): Redeeming Joy Overcoming “Darkness” in Recovery
Kenneth Blum1,2,3,4,5,6,7,8,9,10*, Mary Hauser7, Gozde Agan7, John Giordano11, James Fratantonio7, Rajendra D. Badgaiyan11, Marcelo Febo1
1Department of Psychiatry & Mcknight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA.
1Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA.
2Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA.
3Department of Nutrigenomics, RD Solutions, Salt Lake City, Utah, USA.
4Victory Nutrition International, LLC, Lederoch, Penn, USA.
5Department of Clinical Neurology, Path Foundation, New York, NY, USA.
6Department of Personalized Medicine, IGENE, LLC, Austin, Texas, USA.
7Dominion Diagnostics, LLC, North Kingstown, Rhode Island, USA.
8Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California, USA.
9Department of Clinical Research, Nupathways, Inc., Indianapolis, Indiana, USA.
10Department of Holistic Medicine, National Institute of Holistic Studies, North Miami Beach, Florida, USA.
11Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, USA.
DOI: 10.4236/psych.2015.64040   PDF   HTML   XML   3,859 Downloads   4,831 Views   Citations

Abstract

Dopamine’s role is central to motivation, pleasure states and anti-stress behavioral traits. Throughout five decades of observations of prevention, diagnosis, and tertiary treatment, many positive changes have been instrumental in the enhancement of lives of millions. However, we have not yet developed any workable “Standard of Care” for the chronic disorder known as “Reward Deficiency Syndrome (RDS)” first coined by Blum’s laboratory in 1996. In the 1980s, the addiction field turned toward adoption of the well-known 12-step program to assist in the treatment for many addictions. The biological psychiatry field together with the pharmaceutical industry developed an array of Medication Assisted Treatment (MAT)” compounds approved for alcohol and opioids but not psychostimulants. Furthermore, the FDA approved drugs favoring the blocking of dopamine instead of its important activation based on deficit especially in terms of blunted reward response at the pre-frontal cortices and meso limbic brain regions. A major problem is that powerful dopamine D2 agonists chronically induce down-regulation of dopaminergic function leaving a gap between dopamine agonistic therapy (up-regulation over a long period of time) and promotion of dopamine homeostatic mechanisms. This editorial will focus on the incorporation of appropriate diagnosis of genetic risk utilizing a novel panel of genes (SNPs), advanced urine drug testing “Comprehensive Analysis of Reported Drugs (CARD)” and enhancement of functional connectivity with a complex putative dopaminergic D2 agonist KB220Z. Until we can incorporate these and other holistic approaches, the relapse rate will continue to be unacceptable. It is important to re-evaluate our current treatment tactics including dopaminergic activation in the longterm as part of the after-care program in the 14,500 treatments center in the United States alone. In doing so, we may be able to overcome this horrific societal dilemma redeeming “dopamine Joy” in recovery bringing light to the reward system instead of darkness.

Share and Cite:

Blum, K. , Hauser, M. , Agan, G. , Giordano, J. , Fratantonio, J. , Badgaiyan, R. & Febo, M. (2015). Understanding the Importance of Dopaminergic Deficit in Reward Deficiency Syndrome (RDS): Redeeming Joy Overcoming “Darkness” in Recovery. Psychology, 6, 435-439. doi: 10.4236/psych.2015.64040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Anton, R. F., Oroszi, G., O’Malley, S., Couper, D., Swift, R., Pettinati, H., & Goldman, D. (2008). An Evaluation of mu-Opioid Receptor (OPRM1) as a Predictor of Naltrexone Response in the Treatment of Alcohol Dependence: Results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) Study. Archives of General Psychiatry, 65, 135-44.
http://dx.doi.org/10.1001/archpsyc.65.2.135
[2] Bahi, A., & Dreyer, J. L. (2008). Overexpression of Plasminogen Activators in the Nucleus Accumbens Enhances Cocaine-, Amphetamine- and Morphine-Induced Reward and Behavioral Sensitization. Genes, Brain and Behavior, 7, 244-256.
http://dx.doi.org/10.1111/j.1601-183X.2007.00346.x
[3] Blum, K. (1991). Alcohol and the Addictive Brain. New York: The Free Press.
[4] Blum, K., Braverman, E. R., Kreuk, F., Dushaj, K., Li, M. et al. (2014). Genome Wide Sequencing Compared to Candidate Gene Association Studies for Predisposition to Substance Abuse a Subset of Reward Deficiency Syndrome (RDS): Are We Throwing the Baby out with the Bathwater? Epidemiology, 4, 158.
http://dx.doi.org/10.4172/2161-1165.1000158
[5] Blum, K., Chen, T. J., Meshkin, B., Downs, B. W., Gordon, C. A., Blum, S., Mengucci, J. F., Braverman, E. R., Arcuri, V., Varshavskiy, M., Deutsch, R., & Martinez-Pons, M. (2006). Reward Deficiency Syndrome in Obesity: A Preliminary Cross-Sectional Trial with a Genotrim Variant. Advances in Therapy, 23, 1040-1051.
http://dx.doi.org/10.1007/BF02850224
[6] Blum, K., Han, D., Femino, J., Smith, D. E., Saunders, S., Simpatico, T., Schoenthaler, S. J., Oscar-Berman, M., & Gold, M. S. (2014). Systematic Evaluation of “Compliance” to Prescribed Treatment Medications and “Abstinence” from Psychoactive Drug Abuse in Chemical Dependence Programs: Data from the Comprehensive Analysis of Reported Drugs. PlosOne, 9, e104275.
http://dx.doi.org/10.1371/journal.pone.0104275
[7] Blum, K., Noble, E. P., Sheridan, P. J., Montgomery, A., Ritchie, T., Jagadeeswaran, P., Nogami, H., Briggs, A. H., & Cohn, J. B. (1990). Allelic Association of Human Dopamine D2 Receptor Gene in Alcoholism. JAMA, 263, 2055-2060.
http://dx.doi.org/10.1001/jama.1990.03440150063027
[8] Blum, K., Oscar-Berman, M., Demetrovics, Z., Barh, D., & Gold, M.S. (2014). Genetic Addiction Risk Score (GARS): Molecular Neurogenetic Evidence for Predisposition to Reward Deficiency Syndrome (RDS). Molecular Neurobiology, 50, 765-796.
[9] Blum, K., Oscar-Berman, M., Dinubile, N., Giordano, J., Braverman, E. R., Truesdell, C. E., Barh, D., & Badgaiyan, R. D. (2013). Coupling Genetic Addiction Risk Score (GARS) with Electrotherapy: Fighting Iatrogenic Opioid Dependence. Journal of Addiction Research Therapy, 4, Article ID: 1000163.
[10] Bowirrat, A., Chen, T. J., Oscar-Berman, M., Madigan, M., Chen, A. L., Bailey, J. A., Braverman, E. R., Kerner, M., Giordano, J., Morse, S., Downs, B. W., Waite, R. L., Fornari, F., Armaly, Z., & Blum, K. (2012). Neuropsychopharmacology and Neurogenetic Aspects of Executive Functioning: Should Reward Gene Polymorphisms Constitute a Diagnostic Tool to Identify Individuals at Risk for Impaired Judgment? Molecular Neurobiology, 45, 298-313.
http://dx.doi.org/10.1007/s12035-012-8247-z
[11] Chen, K. C., Lin, Y. C., Chao, W. C., Chung, H. K., Chi, S. S., Liu, W. S., & Wu, W. T. (2012). Association of Genetic Polymorphisms of Glutamate Decarboxylase 2 and the Dopamine D2 Receptor with Obesity in Taiwanese Subjects. Annals of Saudi Medicine, 32, 121-126.
[12] Chen, T. J., Blum, K., Mathews, D., Fisher, L., Schnautz, N., Braverman, E. R., Schoolfield, J., Downs, B. W., & Comings, D. E. (2005). Are Dopaminergic Genes Involved in a Predisposition to Pathological Aggression? Hypothesizing the Importance of “Super Normal Controls” in Psychiatricgenetic Research of Complex Behavioral Disorders. Medical Hypotheses, 65, 703-707.
http://dx.doi.org/10.1016/j.mehy.2005.04.037
[13] Crist, R. C., Clarke, T. K., Ang, A., Ambrose-Lanci, L. M., Lohoff, F. W., Saxon, A. J., Ling, W., Hillhouse, M. P., Bruce, R. D., Woody, G., & Berrettini, W. H. (2013). An Intronic Variant in OPRD1 Predicts Treatment Outcome for Opioid Dependence in African-Americans. Neuropsychopharmacology, 38, 2003-2010.
http://dx.doi.org/10.1038/npp.2013.99
[14] Levey, D. F., Le-Niculescu, H., Frank, J., Ayalew, M., Jain, N., Kirlin, B., Learman, R., Winiger, E., Rodd, Z., Shekhar, A., Schork, N., Kiefe, F., Wodarz, N., Müller-Myhsok, B., Dahmen, N., GESGA Consortium, Nothen, M., Sherva, R., Farrer, L., Smith, A. H., Kranzler, H. R., Rietschel, M., Gelernter, J., & Niculescu, A. B. (2014). Genetic Risk Prediction and Neurobiological Understanding of Alcoholism. Translational Psychiatry, 4, e391.
http://dx.doi.org/10.1038/tp.2014.29
[15] Palm, S., & Nylander, I. (2014). Dopamine Release Dynamics Change during Adolescence and after Voluntary Alcohol Intake. PLOS One, 9, e96337.
http://dx.doi.org/10.1371/journal.pone.0096337
[16] Polter, A. M., Bishop, R. A., Briand, L. A., Graziane, N. M., Pierce, R. C., & Kauer, J. A. (2014). Poststress Block of Kappa Opioid Receptors Rescues Long-Term Potentiation of Inhibitory Synapses and Prevents Reinstatement of Cocaine Seeking. Biological Psychiatry, 76, 785-793.
[17] Morrison, M. A. (1990). Addiction in Adolescents. Western Journal of Medicine, 152, 543-546.
[18] Smith, D. E. (2012). The Process Addictions and the New ASAM Definition of Addiction. Journal of Psychoactive Drugs, 44, 1-4.
http://dx.doi.org/10.1080/02791072.2012.662105
[19] Starkman, B. G., Sakharkar, A. J., & Pandey, S. C. (2012). Epigenetics—Beyond the Genome in Alcoholism. Alcohol Research, 34, 293-305.
[20] Talani, G., Licheri, V., Masala, N., Follesa, P., Mostallino, M. C., Biggio, G., & Sanna, E. (2014). Increased Voluntary Ethanol Consumption and Changes in Hippocampal Synaptic Plasticity in Isolated C57BL/6J Mice. Neurochemical Research, 39, 997-1004.
http://dx.doi.org/10.1007/s11064-013-1216-8
[21] Van Dam, N. T., Rando, K., Potenza, M. N., Tuit, K., & Sinha, R. (2014). Childhood Maltreatment, Altered Limbic Neurobiology, and Substance Use Relapse Severity via Trauma-Specific Reductions in Limbic Gray Matter Volume. JAMA Psychiatry, 71, 917-925.
[22] Williams, C. L., Buchta, W. C., & Riegel, A. C. (2014). CRF-R2 and the Heterosynaptic Regulation of VTA Glutamate during Reinstatement of Cocaine Seeking. Journal of Neuroscience, 34, 10402-10414.
http://dx.doi.org/10.1523/JNEUROSCI.0911-13.2014
[23] Willuhn, I., Tose, A., Wanat, M. J., Hart, A. S., Hollon, N. G., Phillips, P. E., Schwarting, R. K., & Wohr, M. (2014). Phasic Dopamine Release in the Nucleus Accumbens in Response to Pro-Social 50 kHz Ultrasonic Vocalizations in Rats. Journal of Neuroscience, 34, 10616-10623.
http://dx.doi.org/10.1523/JNEUROSCI.1060-14.2014
[24] Wise, R. A., & Koob, G. F. (2014). The Development and Maintenance of Drug Addiction. Neuropsychopharmacology, 39, 254-262.
http://dx.doi.org/10.1038/npp.2013.261
[25] Zandy, S. L., Matthews, D. B., Tokunaga, S., Miller, A. D., Blaha, C. D., & Mittleman, G. (2014). Reduced Dopamine Release in the Nucleus Accumbens Core of Adult Rats Following Adolescent Binge Alcohol Exposure: Age and Dose-Dependent Analysis. Psychopharmacology, 232, 777-784.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.