Uptake and Organ Distribution of Feed Introduced Plasmid DNA in Growing or Pregnant Rats

.
DOI: 10.4236/fns.2011.24053   PDF   HTML     4,410 Downloads   8,522 Views   Citations

Abstract

Fragments of DNA present in food and feed are taken up by the gastrointestinal tract (GIT) of mammals. The extent of uptake varies according to organism, study design and DNA source. This study explores the hypothesis that actively growing, as well as pregnant rats, are more likely to take up DNA from the GIT than mature animals due to the high demand for nutrients for tissue and organ development. Plasmid DNA (pDNA) was added to standard feed for growing, and pregnant rats. The young rats received one pDNA (50 μg) containing meal by gavage. Blood, organ and tissue samples were harvested at 2 h to 3 days post feeding (p.f). The pregnant females were fed pellets containing pDNA (100 μg) daily, starting at day 5 after established pregnancy. Females and foeti were killed at days 7 and 14 of gestation, and pups at the time of weaning. Genomic DNA was analyzed by PCR followed by Southern blot and real-time PCR. A 201 bp target sequence was detected in mesenteric lymph nodes, spleen, liver and pancreas from growing rats 2 h p.f. At 6 h, target DNA was detectable in the kidneys, and at three days p.f. in the liver. Target DNA was not detected in samples from pregnant rats, their foeti or pups. In conclusion, low level of feed introduced DNA could be transiently detected in organs of young, growing rats. However, indications of increased DNA uptake levels in the GIT of growing rats were not found.

Share and Cite:

I. Grønsberg, L. Nordgård, K. Fenton, B. Hegge, K. Nielsen, S. Bardocz, A. Pusztai and T. Traavik, "Uptake and Organ Distribution of Feed Introduced Plasmid DNA in Growing or Pregnant Rats," Food and Nutrition Sciences, Vol. 2 No. 4, 2011, pp. 377-386. doi: 10.4236/fns.2011.24053.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Schubbert, C. Lettmann and W. Doerfler, “Ingested Foreign (Phage M13) DNA Survives Transiently in the Gastrointestinal Tract and Enters the Bloodstream of Mice,” Molecular and General Genetics, Vol. 242, No. 5, 1994, pp. 495-504. doi:10.1007/BF00285273
[2] R. Schubbert, D. Renz, B. Schmitz and W. Doerfler, “Foreign (M13) DNA Ingested by Mice Reaches Peripheral Leukocytes, Spleen, and Liver via the Intestinal Wall Mucosa and Can be Covalently Linked to Mouse DNA,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, No. 3, 1997, pp. 961-966. doi:10.1073/pnas.94.3.961
[3] R. Schubbert, U. Hohlweg, D. Renz and W. Doerfler, “On the Fate of Orally Ingested Feed-Derived DNA in Mice: Chromosomal Association and Placental Transmission to the Fetus,” Molecular and General Genetics, Vol. 259, No. 6, 1998, pp. 569-576. doi:10.1007/s004380050850
[4] W. Doerfler, R. Schubbert, H. Heller, J. Hertz, R. Remus, J. Schr?der, C. K?mmer, K. Hilger-Eversheim, U. Gerhardt, B. Schmidt, D. Renz and G. Schell, “Foreign DNA in Mammalian Systems,” Acta Pathologica, Microbiologica, et Immunologica, Scandinavica, Supplement, Vol. 106, No. 84, 1998, pp. 62-68.
[5] U. Hohlweg and W. Doerfler, “On the Fate of Plant or Other Foreign Genes upon the Uptake in Food or after Intramuscular Injection in Mice,” Molecular Genetics and Genomics, Vol. 265, No. 2, 2001, pp. 225-233. doi:10.1007/s004380100450
[6] P. A. Chambers, P. S. Duggan, J. Heritage and M. J. Forbes, “The Fate of Antibiotic Resistance Marker Genes in Transgenic Plant Feed Material Fed to Chickens,” Journal of Antimicrobial Chemotherapy, Vol. 49, No. 1, 2002, pp. 161-164. doi:10.1093/jac/49.1.161
[7] E. H. Chowdhury, O. Mikami, Y. Nakajima, A. Hino, H. Kuribara, K. Suga, M. Hanazumi and C. Yomemochi, “Detection of Genetically Modified Maize DNA Fragments in the Intestinal Contents of Pigs Fed StarLink CBH351,” Veterinary and Human Toxicology, Vol. 45, No. 2, 2003, pp. 95-96.
[8] E. H. Chowdhury, H. Kuribara, A. Hino, P. Sultana, O. Mikami, N. Shimada, K. S. Guruge, M. Saito and Y. Nakajama, “Detection of Corn Intrinsic and Recombinant DNA Fragments and Cry1Ab Protein in the Gastrointestinal Contents of Pigs Fed Genetically Modified Corn Bt11,” Journal of Animal Science, Vol. 81, No. 10, 2003, pp. 2546-2551.
[9] E. H. Chowdhury, O. Mikami, H. Murata, P. Sultana, N. Shimada, M. Yoshioka, K. S. Guruge, S. Yamamoto, S. Miyazaki, N. Yamanaka and Y. J. Nakajima, “Fate of Maize Intrinsic and Recombinant Genes in Calves Fed Genetically Modified Maize Bt11,” Journal of Food Protection, Vol. 67, No. 2, 2004, pp. 365-370.
[10] P. S. Duggan, P. A Chambers, J. Heritage and M. J. Forbes, “Fate of Genetically Modified Maize DNA in the Oral Cavity and Rumen of Sheep,” British Journal of Nutrition, Vol. 89, No. 2, 2003, pp. 159-166. doi:10.1079/BJN2002764
[11] R. H. Phipps, E. R. Deaville and B. C. Maddison, “Detection of Transgenic and Endogenous Plant DNA in Rumen Fluid, Duodenal Digesta, Milk, Blood, and Feces of Lactating Dairy Cows,” Journal of Dairy Science, Vol. 86, No. 12, 2003, pp. 4070-4078. doi:10.3168/jds.S0022-0302(03)74019-3
[12] T. Reuter and K. Aulrich, “Investigations on Genetically Modified Maize (Bt-Maize) in Pig Nutrition: Fate of Feed-Ingested Feed-Derived DNA in Pig Bodies,” European Food Research and Technology, Vol. 216, No. 3, 2003, pp. 185-192.
[13] E. R. Deaville and B. C. Maddison, “Detection of Transgenic and Endogenous Plant DNA Fragments in the Blood, Tissues, and Digesta of Broilers,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 26, 2005, pp. 10268-10275. doi:10.1021/jf051652f
[14] C. R. Nielsen, K. G. Berdal, A. M. Bakke-McKellup and A. Holst-Jensen, “Dietary DNA in Blood and Organs of Atlantic Salmon (Salmo Salar L.),” European Food Research and Technology, Vol. 221, No. 1-2, 2005, pp. 1-8. doi:10.1007/s00217-005-1160-1
[15] R. Sharma, D. Damgaard, T. W. Alexander, M. E. R. Dugan, J. L. Aalhus, K. Stanford and T. A. McAllister, “Detection of Transgenic and Endogenous Plant DNA in Digesta and Tissues of Sheep and Pigs Fed Roundup Ready Canola Meal,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 5, 2006, pp. 1699-1709. doi:10.1021/jf052459o
[16] G. Flachowsky, K. Aulrich, H. B'ohme and I. Halle, “An- imal Nutrition with Feeds from Genetically Modified Pla- nts,” Animal Feed Science and Technology, Vol. 133, No. 1-2, 2007, pp. 2-30. doi:10.1016/j.anifeedsci.2006.08.002
[17] R. Einspanier, A Klotz, J. Kraft, K. Aulrich, R. Poser, F. Schw?gele, G. Jahreis and G. Flachowsky, “The Fate of Forage Plant DNA in Farm Animals: A Collaborative Case-Study Investigating Cattle and Chicken Fed Recombinant Plant Material,” European Food Research and Technology, Vol. 212, No. 2, 2001, pp. 129-134. doi:10.1007/s002170000248
[18] K. Aeschbacher, R. Messikommer, L. Meile and C. Wenk, “Bt176 Corn in Poultry Nutrition: Physiological Characteristics and Fate of Recombinant Plant DNA in Chickens,” Poultry Science, Vol. 84, No. 3, 2005, pp. 385-394.
[19] M. A. Tony, A. Butschke, H. Broll, L. Grohmann, J. Zagon, I. Halle, S. D?nike, M. Schauzu, H. M. Hafez and G. Flachowsky, “Safety Assessment of Bt176 Maize in Broiler Nutrition: Degradation of Maize-DNA and Its Metabolic Fate,” Archives of Animal Nutrition, Vol. 57, No. 4, 2003, pp. 235-252. doi:10.1080/00039420310001594397
[20] F. Rossi, M. Morlacchini, G. Fusconi, A. Pietri, R. Mazza and G. Piva, “Effect of Bt Corn on Broiler Growth Performance and Fate of Feed-Derived DNA in the Digestive Tract,” Poultry Science, Vol. 84, No. 7, 2005, pp. 1022- 1030.
[21] A. Klotz and R. Einspanier, “Detection of ‘Novel-Feed’ in Animals? Injury of Consumers of Meat or Milk is Not Expected,” In German, Mais, Vol. 3, 1998, pp. 109-111.
[22] R. Sharma, D. Damgaard, T. W. Alexander, M. E. R. Dugan, J. L. Aalhus, K. Stanford and T. A. McAllister, “Detection of Transgenic and Endogenous Plant DNA in Digesta and Tissues of Sheep and Pigs Fed Roundup Ready Canola Meal,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 5, 2006, pp. 1699-1709. doi:10.1021/jf052459o
[23] R. Guertler, B. Lutz, R. Kuehn, H. H. D. Meyer, R. Einspanier, B. Killermann and C. Albrecht, “Fate of Recom- binant DNA and Cry1Ab Protein after Ingestion and Dispersal of Genetically Modified Maize in Comparison to Rapeseed by Fallow Deer (Dama Dama),” European Journal of Wildlife Research, Vol. 54, No. 1, 2007, pp. 36-43. doi:10.1007/s10344-007-0104-4
[24] A. Forsman, D. Ushameckis, A. Bindra, Z. Yun and J. Blomberg, “Uptake of Amplifiable Fragments of Retrotransposon DNA from the Human Alimentary Tract,” Molecular Genetic and Genomics, Vol. 270, No. 4, 2003, pp. 362-368. doi:10.1007/s00438-003-0930-3
[25] M. Palka-Santini, B. Schwarz-Herzke, M. H?sel, D. Renz, S. Auerochs, H. Brondke and W. Doerfler, “The Gastrointestinal Tract as the Portal of Entry for Foreign Macromolecules: Fate of DNA and Proteins,” Molecular Genetics and Genomics, Vol. 270, No. 3, 2003, pp. 201- 215. doi:10.1007/s00438-003-0907-2
[26] A. Wilcks, A. H. A. M. Hoek, R. G. Joosten, B. B. L. Jacobsen and H. J. M. Aarts, “Persistence of DNA Studied in Different ex Vivo and in Vivo Rat Models Simulating the Human Gut Situation,” Food and Chemical Toxicology, Vol. 42, No. 3, 2004, pp. 493-502. doi:10.1016/j.fct.2003.10.013
[27] W. Doerfler and R. Schubbert, “Uptake of Feed-Derived DNA from the Environment: The Gastrointestinal Tract and the Placenta as Portals of Entry,” Wiener Klinische Wochenschrift, Vol. 110, No. 2, 1998, pp. 40-44.
[28] W. Doerfler, R. Schubbert, H. Heller, C. K?mmer, K. Hilger-Eversheim, M. Knoblauch and R. Remus, “Inte- gration of Foreign DNA and Its Consequences in Mammalian Systems,” Trends in Biotechnology, Vol. 15, No. 8, 1997, pp. 297-301. doi:10.1016/S0167-7799(97)01061-5
[29] W. Doerfler, R. Schubbert, H. Heller, J. Hertz, R. Remus, J. Schr?er, C. K?mmer, K. Hilger-Eversheim, U. Gerhardt, B. Schmitz, D. Renz and G. Schell, “Foreign DNA in Mammalian Systems,” APMIS Supplement, Vol. 106, No 84, 1998, pp. 62-68.
[30] S. Swiatkiewicz, M. Twardowska, J. Markowsi, M. Mazur, Z. Sieradzki and K. Kwiatek, “Fate of Transgenic DNA from Bt Corn and Roundup Ready Soybean Meal in Broilers Fed GMO Feed,” Bulletin of the Veterinary Institute in Pulawy, Vol. 54, No. 2, 2010, pp. 237-242.
[31] R. Tudisco, V. Mastellone, M. I. Cutrignelli, P. Lombardim, F. Bovera, N. Mirabella, G. Piccolo, S. Calabro, S. Avallone and F. Infascelli, “Fate of Transgenic DNA and Evaluation of Metabolic Effects in Goats Fed Genetically Modified Soybean and Their Offsprings,” Animal, Vol. 4, No. 10, 2010, pp. 1662-1671. doi:10.1017/S1751731110000728
[32] J. A. Heinemann, “Report on Animals Exposed to GM Ingredients in Animal Feed,” Prepared for the Commerce Commission of New Zealand, 2009.
[33] R. Tudisco, M. I. Cutrignelli, S. Calabro and F. Infascelli, “Investigation on Genetically Modified Soybean (RoundUp Ready) in Goat Nutrition: DNA Detection in Suckling Kids,” Italian Journal of Animal Science, Vol. 6, No. 1, 2007, pp. 380-382.
[34] R. Tudisco, F. Infascelli, M. I. Cutrignelli, F. Bovera, C. Morcia, P. Faccioli and V. Terzi, “Fate of Feed Plant DNA Monitored in Water Buffalo (Bubalus Bubalis) and Rabbit (Orytolagus Cuniucus),” Livestock Science, Vol. 105, No. 1, 2006, pp. 12-18. doi:10.1016/j.livsci.2006.04.036
[35] R. Tudisco, et al., “Genetically Modified Soya Bean in Rabbit Feeding: Detection of DNA Fragments and Evaluation of Metabolic Effects by Enzymatic Analysis,” Animal Science, Vol. 82, No. 2, 2006, pp. 193-199. doi:10.1079/ASC200530
[36] R. Adam and B. H. Zimm, “Shear Degradation of DNA,” Nucleic Acid Research, Vol. 4, No. 5, 1977, pp. 1513- 1537. doi:10.1093/nar/4.5.1513
[37] A. Chiter, M. Forbes and E. G. Blair, “DNA Stability in Plant Tissues: Implications for the Possible Transfer of Genes from Genetically Modified Food,” FEBS Letters, Vol. 481, No. 2, 2000, pp. 164-168. doi:10.1016/S0014-5793(00)01986-4
[38] T. Bauer, P. Weller, W. P. Hammes and C. Hertel, “The Effect of Processing Parameters on DNA Degradation in Food,” European Food Research and Technology, Vol. 217, No. 4, 2003, pp. 338-343. doi:10.1007/s00217-003-0743-y
[39] M. Kharazmi, S. Sczesny, M. Blaut, W. P. Hammes and C. Hertel, “Effect of Food Processing on the Fate of DNA with Regard to Degradation and Transformation Capability in Bacillus Subtilis,” Applied and Environmental Microbiology, Vol. 69, No. 10, 2003, pp. 6121-6127. doi:10.1128/AEM.69.10.6121-6127.2003
[40] D. K. Mercer, C. M. Melville, K. P. Scott and H. J. Flint, “Natural Genetic Transformation in the Rumen Bacterium Streptococcus Bovis JB1,” FEMS Microbiology Letters, Vol. 179, No. 2, 1999, pp. 485-490. doi:10.1111/j.1574-6968.1999.tb08767.x
[41] D. K. Mercer, K. P. Scott, W. A. Bruce-Johnson, A. L. Glover and H. J. Flint, “Fate of Free DNA and Transformation of the Oral Bacterium Streptococcus Gordonii DL1 by Plasmid DNA in Human Saliva,” Applied and Environmental Microbiology, Vol. 65, No. 1, 1999, pp. 6- 10.
[42] D. K. Mercer, K. P. Scott, C. M. Melville, L. A. Glover and H. J. Flint, “Transformation of an Oral Bacterium via Chromosomal Integration of Free DNA in the Presence of Human Saliva,” FEMS Microbiology Letters, Vol. 200, No. 2, 2001, pp. 163-167. doi:10.1111/j.1574-6968.2001.tb10709.x
[43] G. I. Nedredal, K. H. Elvevold, L. M. Ytreb?, R. Olsen, A. Revhaug and B. Smedsr?d, “Liver Sinusoidal Endothelial Cells Represents an Important Blood Clearance System in Pigs,” Comparative Hepatology, Vol. 2, No. 1, 2003. doi:10.1186/1476-5926-2-1
[44] J. Hisazumi, N. Kobayashi, M. Nishikawa and Y. Takakura, “Significant Role of Liver Sinusoidal Endothelial Cells in Hepatic Uptake and Degradation of Naked Plasmid DNA after Intravenous Injection,” Pharmaceutical Research, Vol. 21, No. 7, 2004, pp. 1223-1228. i:10.1023/B:PHAM.0000033009.17594.e5
[45] M. Myhre, K. A. Fenton, J. Eggert, K. M. Nielsen and T. Traavik, “The 35 S CaMV Plant Virus Promoter is Active in Human Enterocyte-Like Cells,” European Food Research and Technology, Vol. 222, No. 1-2, 2006, pp. 185-193.
[46] A. Pusztai, S. Bardocz, R. Alonso, M. J. Chrispeels, H. E. Schroeder, L. M. Tabe and T. J. V. Higgins, “Expression of the Insecticidal Bean Alpha-Amylase Inhibitor Transgene Has Minimal Detrimental Effect on the Nutritional Value of Peas Fed to Rats at 30% of the Diet,” Journal of Nutrition, Vol. 129, No. 8, 1999, pp. 1597-1603.
[47] P. G. Reeves, “Components of the AIN-93 Diets as Improvements in the AIN-76A Diet,” Journal of Nutrition, Vol. 127, No. 5, 1997, pp. 838S-841S.
[48] K. M. Nielsen, A. M. Bones and J. D. van Elsas, “Induced Natural Transformation of Acinetobacter Calcoaceticus in Soil Microcosms,” Applied and Environmental Microbiology, Vol. 63, No. 10, 1997, pp. 3972-3977.
[49] K. M. Nielsen, K. Smalla and J. D. van Elsas, “Trans- formation of Acinetobacter sp. Strain BD413 (pFG4- DeltanptII) with Transgenic Plant DNA in Soil Microcosms and Effects of Kanamycin on Selection of Transformants,” Applied and Environmental Microbiology, Vol. 66, No. 3, 2000, pp. 1237-1242. doi:10.1128/AEM.66.3.1237-1242.2000
[50] J. L. Ray and K. M. Nielsen, “Experimental Methods for Assaying Natural Transformation and Inferring Horizontal Gene Transfer,” Methods in Enzymology, Vol. 395, 2005, pp. 491-520.
[51] J. B. Pesquero, C. J. Lindsey, K. Zeh, C. M. Paiva, D. Ganten and M. Bader, “Molecular Structure and Expression of Rat Bradykinin B2 Receptor Gene. Evidence for Alternative Splicing,” The Journal of Biological Chemistry, Vol. 269, No. 43, 1994, pp. 26920-26925.
[52] Z. Saifudeen, H. Du, S. Dipp and S. S El-Dahr, “The Bradykinin Type 2 Receptor is a Target for p53-Mediated Transcriptional Activation,” The Journal of Biological Chemistry, Vol. 275, No. 20, 2000, pp. 15557-15562. doi:10.1074/jbc.M909810199
[53] G. M. Lee, J. T. Thornthwaite and E. M. Rasch, “Picogram per Cell Determination of DNA by Flow Cytofluorometry,” Analytical Biochemistry, Vol. 137, No. 1, 1984, pp. 221-226. doi:10.1016/0003-2697(84)90374-9
[54] D. B. Lowrie, “DNA Vaccination Exploits Normal Biology,” Nature Medicine, Vol. 4, No. 2, 1998, pp. 147-148. doi:10.1038/nm0298-147
[55] A. Israel, H. W. Chan, W. P. Rowe and M. A. Martin, “Molecular Cloning of Polyoma Virus DNA in Escherichia Coli: Oncogenicity Testing in Hamsters,” Science, Vol. 14, No. 205, 1979, pp. 1140-1142. doi:10.1126/science.224458
[56] K. Kawabata, Y. Takakura and M. Hashida, “The Fate of Plasmid DNA after Intravenous Injection in Mice: Involvement of Scavenger Receptors in Its Hepatic Uptake,” Pharmaceutical Research, Vol. 12, No. 6, 1995, pp. 825-830. doi:10.1023/A:1016248701505
[57] J. P. Shaw, K. Kent, J. Bird, J. Fishback and B. Froehler, “Modified Deoxyoligonucleotides Stable to Exonuclease Degradation in Serum,” Nucleic Acids Research, Vol. 19, No. 4, 1991, pp. 747-750. doi:10.1093/nar/19.4.747
[58] J. N. Udall and W. A. Walker, “The Physiologic and Pathologic Basis for the Transport of Macromolecules across the Intestinal Tract,” Journal of Pediatric Gastroenterology and Nutrition, Vol. 1, No. 3, 1982, pp. 295- 301. doi:10.1097/00005176-198201030-00004
[59] L. Vellenga, J. M. V. M. Mouwen, J. E. van Dijk and H. J. Breukink, “Biological and Pathological Aspects of the Mammalian Small Intestinal Permeability to Macromolecules,” The Veterinary Quarterly, Vol. 7, No. 4, 1985, pp. 322-332.
[60] J. M. Hertz, G. Schell and W. Doerfler, “Factors Affecting de Novo Methylation of Foreign DNA in Mouse Embryonic Stem Cells,” The Journal of Biological Chemistry, Vol. 274, No. 34, 1999, pp. 24232-24240. doi:10.1074/jbc.274.34.24232
[61] T. C. Tonheim, J. Leirvik, M. L?voll, A. I. Myhr, J. B?gwald and R. A. Dalmo, “Detection of Supercoiled Plasmid DNA and Luciferase Expression in Atlantic Salmon (Salmo Salar L.) 535 Days after Injection,” Fish and Shellfish Immunology, Vol. 23, No. 4, 2007, pp. 867- 876. doi:10.1016/j.fsi.2007.03.015
[62] T. C. Tonheim, R. A. Dalmo, J. B?gwald and T. Seternes, “What Happens to the DNA Vaccine in Fish? A Review of Current Knowledge,” Fish and Shellfish Immunology, Vol. 25, No. 1-2, 2008, pp. 1-18. doi:10.1016/j.fsi.2008.03.007
[63] K. A. Garver, C. M. Conway, D. G. Elliot and G. Kurath, “Analysis of DNA-Vaccinated Fish Reveals Viral Antigen in Muscle, Kidney and Thymus, and Transient Histopathologic Changes,” Marine Biotechnology, Vol. 7, No. 5, 2005, pp. 540-553. doi:10.1007/s10126-004-5129-z
[64] N. P. Restifo, H. Ying, L. Hwang and W. W. Leitner, “The Promise of Nucleic Acid Vaccines,” Gene Therapy, Vol. 7, No. 2, 2000, pp. 89-92. doi:10.1038/sj.gt.3301117

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.