Thermally Agitated Self Assembled Carbon Nanotubes and the Scenario of Extrinsic Defects


Employing the arc discharge method we prepared carbon nanotubes, CNTs, in open air deionized water. Their morphology was studied varying the annealing temperature and characterizing by Raman Spectroscopy, Transmission Electron Microscopy (TEM), X-Ray Diffractogram (XRD) and Energy Dispersion X-Ray (EDX). According to the study, the CNTs are found self-assembled where the graphene sheets and/or defects are observed sort out themselves with enhancement of temperature.

Share and Cite:

Amente, C. and Dharamvir, K. (2015) Thermally Agitated Self Assembled Carbon Nanotubes and the Scenario of Extrinsic Defects. World Journal of Nano Science and Engineering, 5, 17-25. doi: 10.4236/wjnse.2015.51003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
[2] Iijima, S. and Ichihashi, T. (1993) Single-Shell Nanotubes of 1-nm Diameter. Nature, 363, 603-605.
[3] Feng, D. (2005) Theoretical Study of the Stability of Defects in Single-Walled Carbon Nanotubes as a Function of Their Distance from the Nanotube End. Physical Review B, 72, 1-7.
[4] Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vasques, J. and Beyers, R. (1993) Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature, 363, 605-607.
[5] Yuhuang, W., Myung, J.K., Hongwei, S., Carter, K., Hua, F., Lars, M.E., Wen-Fang, H., Sivaram, A., Robert, H.H. and Richard, E.S. (2005) Continued Growth of Single-Walled Carbon Nanotubes. Nano Letters, 5, 997-1002.
[6] Journet, C. and Bernier, P. (1998) Production of Carbon Nanotubes. Applied Physics A, 67, 1-9.
[7] Bellucci, S., Gaggiotti, G., Marchetti, M., Micciulla, F., Mucciato, R. and Regi, M. (2007) Atomic Force Microscopy Characterization of Carbon Nanotubes. Journal of Physics: Conference Series, 61, 99-104.
[8] Yoshinori, A., Xinluo, Z., Sakae, I. and Iijimaa, S. (2002) Mass Production of Multiwalled Carbon Nanotubes by Hydrogen Arc Discharge. Journal of Crystal Growth, 237-239, 1926-1930.
[9] Shi, Z., Lian, Y., Zhou, X., Gu, Z., Zhang, Y., Iijima, S., Zhou, L., Yue, T.K. and Zhang, S. (1999) Mass Production of Single-Wall Carbon Nanotubes by Arc Discharge Method. Carbon, 37, 1449-1453.
[10] Stancu, M., Ruxanda, G., Ciuparu, D. and Dinescu, A. (2011) Purification of Multiwall Carbon Nanotubes Obtained by AC Arc Discharge Method. Optoelectronics and Advanced Materials, R5, 846-850.
[11] Hamada, N., Sawada, S. and Oshiyama, A. (1992) New One-Dimensional Conductors: Graphitic Microtubules. Physical Review Letters, 68, 1579-1581.
[12] Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Georliga, L.J. and Dekker, C. (1997) Individual Single-Wall Carbon Nanotubes as Quantum Wires. Nature, 386, 474-477.
[13] Tans, S.J., Verschueren, R.M. and Dekker, C. (1998) Room Temperature Transistor Based on a Single Carbon Nanotube. Nature, 393, 49-52.
[14] McEuen, P.L., Fuhrer, M.S. and Park, H. (2002) Single-Walled Carbon Nanotube Electronics. IEEE Transitions on Nanotechnology, 1, 78-85.
[15] Garau, C., Frontera, A., Quinonero, D., Costa, A., Ballester, P. and Dey, P.M. (2003) Lithium Diffusion in Single-Walled Carbon Nanotubes: A Theoretical Study. Chemical Physics Letters, 374, 548-555.
[16] de Heer, W.A., Chatelain, A. and Ugarte, D. (1995) A Carbon Nanotube Field-Emission Electron Source. Science, 270, 1179-1180.
[17] Jensen, A., Hauptmann, J.R., Nyg?rd, J., Sadowski, J. and Lindelof, P.E. (2004) Hybrid Devices from Single Wall Carbon Nanotubes Epitaxially Grown into a Semiconductor Heterostructure. Nano Letters, 4, 349-352.
[18] Martel, R., Schmidt, T., Shea, H.R., Hertel, T. and Avouris, P. (1998) Single-and Multi-Wall Carbon Nanotube Field-Effect Transistors. Applied Physics Letters, 73, 2447-2449.
[19] Tans, S.J., Verschueren, A.R.M. and Dekker, C. (1998) Room-Temperature Transistor Based on a Single Carbon Nanotube. Nature, 393, 49-52.
[20] Alexander, A.K., Sergey, B. Lee, M.Z., Baughman, R.H. and Zakhidov, A.A. (2010) Electron Field Emission from Transparent Multiwalled Carbon Nanotube Sheets for Inverted Field Emission Displays. Carbon, 48, 41-46.
[21] Chai, S.P., Zein, S.H.S. and Mohamed, A.R. (2004) A Review on Carbon Nanotubes Production via Catalytic Methane Decomposition. 1st National Postgraduate Colloquium School of Chemical Engineering USM NAPCOl, 60-69.
[22] Huang, S., Cai, X. and Liu, J. (2003) Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates. Journal of the American Chemical Society, 125, 5636-5637.
[23] Zhang, H., Fu, X., Yin, J., Zhou, C., Chen, Y., Li, M. and Wei, A. (2005) The Effects of MWNTs with Different Dia- meters on the Electrochemical Hydrogen Storage Capability. Physics Letters A, 339, 370-377.
[24] Mahanandia, P., Schneider, J.J., Engel, M., Stühn, B., Subramanyam, S.V. and Nanda, K.K. (2011) Studies towards Synthesis, Evolution and Alignment Characteristics of Dense, Millimeter Long Multiwalled Carbon Nanotube Arrays, Beilstein. Journal of Nanotechnology, 2, 293-301.
[25] Grobert, N. (2007) Carbon Nanotubes Becoming Clean. Materials Today, 10, 28-35.
[26] Zhao, X. and Ando, Y. (1998) Raman Spectra and X-Ray Diffraction Patterns of Carbon Nanotubes Prepared by Hydrogen Arc Discharge. Japanese Journal of Applied Physics, 37, 4846-4849.
[27] Iqbal, M.W., Singh, A.K., Iqbal, M.Z. and Eom, J. (2012) Raman Fingerprint of Doping Due to Metal Adsorbates on Graphene. Journal of Physics Condensed Matter, 24, Article ID: 335301.
[28] Jeong, Y., Kim, J. and Lee, G.W. (2010) Optimizing Functionalization of Multiwalled Carbon Nanotubes Using Sodium Lignosulfonate. Colloid and Polymer Science, 288, 1-6.
[29] Dresselhaus, M.S., Rao, A.M. and Dresselhaus, G. (2004) Raman Spectroscopy in Carbon Nanotubes. Encyclopedia of Nanoscience and Nanotechnology, 9, 307-338.
[30] Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Tsang, C.H.A., Yang, X. and Lee, S.-T. (2010) Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie International Edition, 49, 4430-4434.
[31] Akhavan, O. (2011) Photocatalytic Reduction of Graphene Oxides Hybridized by ZnO Nanoparticles in Ethanol. Carbon, 49, 11-18.
[32] Caoa, A., Xua, C., Lianga, J., Wu, D. and Wei, B. (2001) X-Ray Diffraction Characterization on the Alignment Degree of Carbon Nanotubes. Chemical Physics Letters, 344, 13-17.
[33] Khani, H. and Moradi, O. (2013) Influence of Surface Oxidation on the Morphological and Crystallographic Structure of Multi-Walled Carbon Nanotubes via Different Oxidants. Journal of Nanostructure in Chemistry, 3, 73.
[34] Wang, Z., Ba, D., Liu, F., Cao, P., Yang, T., Gu, Y. and Gao, H. (2005) Synthesis and Characterization of Large Area Well-Aligned Carbon Nanotubes by ECR-CVD without Substrate Bias. Vacuum, 77, 139-144.
[35] Scherrer, P. (1918) Bestimmung der Größe und der innerenStruktur von Kolloidteilchen Mittels Röntgenstrahlen. P, Nachrichten von der Gesellschaft der Wissenschaften, Gttingen. Mathematisch-Physikalische Klasse, 2, 98-100.
[36] Ajayan, P.M. (1999) Nanotubes from Carbon. Chemical Reviews, 99, 1787-1799.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.