Share This Article:

Effective Mass of Acoustic Polaron in Quantum Dots

Abstract Full-Text HTML XML Download Download as PDF (Size:826KB) PP. 37-42
DOI: 10.4236/wjcmp.2015.51005    3,111 Downloads   3,480 Views  

ABSTRACT

The variational effective mass with respect to the e-p coupling constant for different values of cutoff wave vector is performed in quantum dot. The self-trapping transition of acoustic polaron in quantum dot is reconsidered by character of the effective mass curve varying with the e-p coupling. The holes are determined to be self-trapped in AlN quantum dot systems.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Li, H. , Hou, J. and Duan, X. (2015) Effective Mass of Acoustic Polaron in Quantum Dots. World Journal of Condensed Matter Physics, 5, 37-42. doi: 10.4236/wjcmp.2015.51005.

References

[1] Wittmer, J.P., Tanguy, A., Barrat, J.-L. and Lewis, L. (2002) Vibrations of Amorphous, Nanometric Structures: When Does Continuum Theory Apply? Europhysics Letters, 57, 423.
http://iopscience.iop.org/0295-5075/57/3/423/fulltext/
http://dx.doi.org/10.1209/epl/i2002-00471-9
[2] Murray, D.B. and Saviot, L. (2004) Phonons in Inhomogeneous Continuum: Vibrations of an Embedded Nanoparticle. Physical Review B, 69, Article ID: 094305.
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.69.094305#fulltext
http://dx.doi.org/10.1103/PhysRevB.69.094305
[3] Andrievski, R.A. and Glezer, A.M. (2001) Size Effects in Properties of Nanomaterials. Scripta Materialia, 44, 1621-1624.
http://www.sciencedirect.com/science/article/pii/S1359646201007862?np=y
http://dx.doi.org/10.1016/S1359-6462(01)00786-2
[4] Rolo, A.G. and Vasilevskiy, M.I. (2007) Raman Spectroscopy of Optical Phonons Confined in Semiconductor Quantum Dots and Nanocrystals. Journal of Raman Spectroscopy, 38, 618-633.
http://onlinelibrary.wiley.com/doi/10.1002/jrs.1746/abstract
http://dx.doi.org/10.1002/jrs.1746
[5] Sternitzke, M. (1997) Structural Ceramic Nanocomposites. Journal of the European Ceramic Society, 17, 1061-1082.
http://www.sciencedirect.com/science/article/pii/S0955221996002221#
http://dx.doi.org/10.1016/S0955-2219(96)00222-1
[6] Peeters, F.M. and Devreese, J.T. (1985) Acoustical Polaron in Three Dimensions: The Ground-State Energy and the Self-Trapping Transition. Physical Review B, 32, 3515-3521.
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.32.3515
http://dx.doi.org/10.1103/PhysRevB.32.3515
[7] Hou, J.H. and Liang, X.X. (2007) On the Possibility of Self-Trapping Transition of Acoustic Polarons in Two Dimensions. Chinese Physics, 16, 3059-3066.
http://iopscience.iop.org/1009-1963/16/10/040
http://dx.doi.org/10.1088/1009-1963/16/10/040
[8] Manka, R. and Suffczynski, M. (1980) The Large Polaron First-Order Phase Transition. Journal of Physics C: Solid State Physics, 13, 6369-6379.
http://iopscience.iop.org/0022-3719/13/34/007
http://dx.doi.org/10.1088/0022-3719/13/34/007
[9] Shoji, H. and Tokuda, N. (1981) Phase-Transition-Like Behaviour in the Problems of Different Types of Polaron. Journal of Physics C: Solid State Physics, 14, 1231-1242.
http://iopscience.iop.org/0022-3719/14/9/010
http://dx.doi.org/10.1088/0022-3719/14/9/010
[10] Hou, J.H. and Liang, X.X. (2007) Self-Trapping of Acoustic Polaron in One Dimension. Chinese Physics Letters, 24, 3222-3224.
http://cpl.iphy.ac.cn/EN/abstract/abstract35961.shtml
http://dx.doi.org/10.1088/0256-307X/24/11/055
[11] Peeters, F.M. and Devreese, J.T. (1985) Acoustical Polaron in Three Dimensions: The Ground-State Energy and the Self-Trapping Transition. Physical Review B, 32, 3515-3521.
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.32.3515
http://dx.doi.org/10.1103/PhysRevB.32.3515
[12] Farias, G.A., da Costaw, W.B. and Peeters, F.M. (1996) Acoustical Polarons and Bipolarons in Two Dimension. Physical Review B, 54, 12835-12840. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.12835#fulltext
http://dx.doi.org/10.1103/PhysRevB.54.12835
[13] Xiao, J.L., Eerdun, C. and Zhang, P. (1999) Properties of Surface Magnetopolaron in CdF2 Semiconductor. Chinese Journal of Semiconductors, 20, 411-447.
http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?
file_no=200592656361205&flag=1
[14] Liang, X.X. and Gu, S.W. (1984) The Polarons and the Third Layers in Semi-Infinite Polar Crystals. Solid State Communications, 50, 505-508.
http://www.sciencedirect.com/science/article/pii/003810988490317X
[15] Sun, J.P., Teng, H.B., Haddad, G.I. and Stroscio, M.A. (1998) Electron-Interface Phonon Interaction in Multiple Quantum Well Structures. Semiconductor Science and Technology, 13, A147.
http://iopscience.iop.org/0268-1242/13/8A/042?fromSearchPage=true
http://dx.doi.org/10.1088/0268-1242/13/8A/042
[16] Mori, N. and Ando, T. (1989) Electron-Optical-Phonon Interaction in Single and Double Heterostructures. Physical Review B, 6175.
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.40.6175#fulltext
http://dx.doi.org/10.1103/PhysRevB.40.6175
[17] Meyer, R., Lewis, L.J., Prakash, S. and Entel, P. (2003) Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials. Physical Review B, 68, Article ID: 104303.
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.68.104303#fulltext http://dx.doi.org/10.1103/PhysRevB.68.104303
[18] Huybrechs, W.J. (1977) Internal Excited State of the Optical Polaron. Journal of Physics C: Solid State Physics, 10, 3761-3768.
http://iopscience.iop.org/0022-3719/10/19/012
http://dx.doi.org/10.1088/0022-3719/10/19/012

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.