[1]
|
Fefferman, C.L. (2006) Existence and Smoothness of the Navier-Stokes Equation. The Millennium Prize Problems, Clay Mathematics Institute, Cambridge, 57-67.
|
[2]
|
Durmagambetov, A.A. and Fazilova, L.S. (2013) Global Estimation of the Cauchy Problem Solutions’ Fourier Transform Derivatives for the Navier-Stokes Equation. International Journal of Modern Nonlinear Theory and Application, 2, 232-234. http://www.scirp.org/journal/IJMNTA/
|
[3]
|
Durmagambetov, A.A. and Fazilova, L.S. (2014) Global Estimation of the Cauchy Problem Solutions’ the Navier-Stokes Equation. Journal of Applied Mathematics and Physics, 2, 17-25. http://www.scirp.org/journal/JAMP/
|
[4]
|
Durmagambetov, A.A. and Fazilova, L.S. (2014) Existence and Blowup Behavior of Global Strong Solutions Navier-Stokes. International Journal of Engineering Science and Innovative Technology, 3, 679-687.
http://ijesit.com/archivedescription.php?id=16
|
[5]
|
Russell, J.S. (1844) Report on Wave. Report of the Fourteenth Meeting of the British Association for the Advancement of Science, York, Plates XLVII-LVII, 90-311.
|
[6]
|
Russell, J.S. (1838) Report of the Committee on Waves. Report of the 7th Meeting of British Association for the Advancement of Science, John Murray, London, 417-496.
|
[7]
|
Ablowitz, M.J. and Segur, H. (1981) Solitons and the Inverse Scattering Transform. SIAM, 435-436.
|
[8]
|
Zabusky, N.J. and Kruskal, M.D. (1965) Interaction of Solitons in a Collisionless Plasma and the Recurrence of Initial States. Physical Review Letters, 15, 240-243. http://dx.doi.org/10.1103/PhysRevLett.15.240
|
[9]
|
Faddeev, L.D. (1974) The Inverse Problem in the Quantum Theory of Scattering II. Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Fundamental’nye Napravleniya, VINITI, Moscow, 93-180.
|
[10]
|
Newton, R.G. (1979) New Result on the Inverse Scattering Problem in Three Dimensions. Physical Review Letters, 43, 541-542. http://dx.doi.org/10.1103/PhysRevLett.43.541
|
[11]
|
Newton, R.G. (1980) Inverse Scattering. II. Three Dimensions. Journal of Mathematical Physics, 21, 1698-1715.
http://dx.doi.org/10.1063/1.524637
|
[12]
|
Somersalo, E., et al. (1988) Inverse Scattering Problem for the Schrodinger’s Equation in Three Dimensions: Connections between Exact and Approximate Methods. Journal of Mathematical Physics, 21, 1698-1715.
|
[13]
|
Povzner, A.Y. (1953) On the Expansion of Arbitrary Functions in Characteristic Functions of the Operator. Russian, Sbornik Mathematics, 32, 56-109.
|
[14]
|
Birman, M.S. (1961) On the Spectrum of Singular Boundary-Value Problems. Russian, Sbornik Mathematics, 55, 74-125.
|
[15]
|
Poincare, H. (1910) Lecons de mecanique celeste, t. Math. & Phys. Papers, 4, 141-148.
|
[16]
|
Leray, J. (1934). Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathematica, 63, 193-248.
http://dx.doi.org/10.1007/BF02547354
|
[17]
|
Ladyzhenskaya, O.A. (1970) Mathematics Problems of Viscous Incondensable Liquid Dynamics. Science, 288.
|
[18]
|
Solonnikov, V.A. (1964) Estimates Solving Nonstationary Linearized Systems of Navier-Stokes’ Equations. Transactions Academy of Sciences USSR, 70, 213-317.
|
[19]
|
Huang, X., Li, J. and Wang, Y. (2013) Serrin-Type Blowup Criterion for Full Compressible Navier-Stokes System. Archive for Rational Mechanics and Analysis, 207, 303-316. http://dx.doi.org/10.1007/s00205-012-0577-5
|
[20]
|
Tao, T. (2014) Finite Time Blowup for an Averaged Three-Dimensional Navier-Stokes Equation.
|