Share This Article:

Preparation and Catalytic Properties of Ti-SBA-15 Mesoporous Materials

Abstract Full-Text HTML Download Download as PDF (Size:2789KB) PP. 661-668
DOI: 10.4236/msa.2011.26091    6,779 Downloads   12,230 Views   Citations

ABSTRACT

Ti-SBA-15 mesoporous materials were directly synthesized via a hydrothermal process and characterized by using nitrogen adsorption-desorption measurements, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, diffuse reflectance ultraviolet-visible spectroscopy, and infrared ray spectroscopy. The effect of synthesis temperatures on the structure and catalytic efficiency in epoxidation of cyclohexene was discussed in details. The results showed that the optimal temperature was 100oC under the reaction conditions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

W. Ye, Z. Lin, B. Dong, J. Kang, X. Zheng and X. Wang, "Preparation and Catalytic Properties of Ti-SBA-15 Mesoporous Materials," Materials Sciences and Applications, Vol. 2 No. 6, 2011, pp. 661-668. doi: 10.4236/msa.2011.26091.

References

[1] T. Sreethawong, Y. Yamada, T. Kobayashi, and S. Yo- shikaw, “Catalysis of nanocrystalline mesoporous TiO2 on cyclohexene epoxidation with H2O2: Effects of mesoporosity and metal oxide additives,” Journal of Mo- lecular Catalysis A-Chemical, Vol. 241, No. 1-2, No- vember 2005, pp. 23-32.
[2] “Technical Data Sheet, Chemical Divisions,” BASF Corporation, 1997
[3] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, Vol. 359, No. 6397, October 1992, pp. 710-712.
[4] G. Lapisardi, F. Chiker, F. Launay, J. P. Nogier, and J. L. Bonardet, “Preparation, characterisation and catalytic ac- tivity of new bifunctional Ti-AlSBA15 materials. Appli- cation to a “one-pot” green synthesis of adipic acid from cyclohexene and organic hydroperoxides,” Microporous and Mesoporous Materials, Vol. 78, No. 2-3, March 2005, pp. 289-295.
[5] W. Wang, M. Song, Z. Y. Zhang, and M. Richardson, “Synthesis and characterization of high nickel-containing mesoporous silica via a modified direct synthesis method,” Journal of Non-Crystalline Solids, Vol. 352, No.21-22, July 2006, pp. 2180-2186.
[6] C. Galacho, M. M. L. M. M. L. Ribeiro Carrott, and P. J. M.Carrott, “Structural and catalytic properties of Ti-MCM-41 synthesised at room temperature up to high Ti content,” Microporous and Mesoporous Materials, Vol. 100, No. 1-3, March 2007, pp. 312-321.
[7] G. A. Eimer, S. G. Casuscelli, C. A. Chanquia, V. Elías, M. E. Crivello, and E. R. Herrero, “The influence of Ti-loading on the acid behavior and on the catalytic ef- ficiency of mesoporous Ti-MCM-41 molecular sieves,” Catalysis Today, Vol. 133, April-June 2008, pp. 639-646.
[8] D.Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,” Science, Vol. 279, No. 5350, January 1998, pp. 548-552.
[9] D.Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, and G. D. Stucky, “Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered hydrothermally stable mesoporous silica structures,” Journal of American Chemistry Society, Vol. 120, No. 24, June 1998, pp. 6024-6036.
[10] P. I. Ravikovitch, and A.V. Neimark, “Characterization of micro- and mesoporosity in SBA-15 materials from ad- sorption data by the NLDFT method,” Journal of Physical Chemistry B, Vol. 105, No. 29, July 2001, pp. 6817-6823.
[11] G. Lapisardi, F. Chiker, F. Launay, J. P. Nogier, and J. L. Bonardet, “A ‘one-pot’ synthesis of adipic acid from cyclohexene under mild conditions with new bifunctional Ti-AlSBA mesostructured catalysts,” Catalysis Commu- nications, Vol. 5, No. 6, June 2004, pp. 277-281.
[12] F. Chiker, J. P. Nogier, F. Launay, and J. L. Bonardet, “New Ti-SBA mesoporous solids functionnalized under gas phase conditions: characterisation and application to selective oxidation of alkenes,” Applied Catalysis A-General, Vol. 243, No. 2, April 2003, pp. 309-321.
[13] E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The de- termination of pore volume and area distributions in po- rous substances. I. Computations from nitrogen iso- therms,” Journal of American Chemistry Society, Vol. 73, No. 1, January 1951, pp. 373-380
[14] J. C. Hu, Y. D. Wang, L. F. Chen, R. Richards, W. M.Yang, Z. C. Liu, and W. Xu, “Synthesis and charac- terization of tungsten-substituted SBA-15: An enhanced catalyst for 1-butene metathesis,” Microporous and Mesoporous Materials, Vol. 93, No. 1-3, July 2006, pp. 158-163.
[15] Z. R. Zhang, J. S. Suo, X. M. Zhang, and S. B. Li, “Synthesis, characterization, and catalytic testing of W-MCM-41 mesoporous molecular sieves,” Applied Ca- talysis A-General, Vol. 179, No. 1-2, April 1999, pp. 11-19.
[16] C. K. Jorgensen, and S. J. Lippard, “Progress in inorgnnic chemistry,” Interscience, 1970.
[17] C. Morterra, A. Zecchina, and G. Costa, “Structure and Reactivity of Surfaces,” Elsevier, 1989.
[18] A. Zecchina, G. Spoto, S. Bordiga, M. Padovan, G. Leo- fanti, and G. Petrini, “Proceedings of the Zeocat 90,” Leipzig, Elsevier, 1990.
[19] T. Blasco, A. Corma, M. T. Navarro, and J. P. Pariente, “Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures,” Journal of Catalysis, Vol. 156, No. 1, September 1995, pp. 65-74.
[20] A. Tuel, S. Gontier, and R. Teissier, “Zirconium contain- ing mesoporous silicas: New catalysts for oxidation reac- tions in the liquid phase,” Chemical Communications, No. 5, March 1996, pp. 651-652.
[21] A. R. Oki, Q. Xu, B. Shpeizer, A. Clearfield, X. Qiu, S. Kirumakki, and S. Tichy, “Synthesis, characterization and activity in cyclohexene epoxidation of mesoporous TiO2-SiO2 mixed oxides,” Catalysis Communications, Vol. 8, No. 6, June 2007, pp. 950-956.
[22] L. M.Yang, Y. J. Wang, G. S. Luo, and Y.Y. Dai, “Si- multaneous removal of copolymer template from SBA-15 in the crystallization process,” Microporous and Mesoporous Materials, Vol. 81, No. 1-3, June 2005, pp. 107-114.
[23] X. L.Yang, W. L. Dai, H. Chen, J. H. Xu, Y. Cao, H. X. Li, and K. N. Fan, “Novel tungsten-containing mesoporous HMS material: its synthesis, characterization and catalytic application in the selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2,” Applied Catalysis A-General, Vol. 283, No. 1-2, April 2005, pp. 1-8.
[24] G. A. Eimer, S. G. Casuscelli, G. E. Ghione, M. E. Crivello, and E. R .Herrero, “Synthesis, characterization and selective oxidation properties of Ti-containing mesoporous catalysts,” Applied Catalysis A-General, Vol. 298, January 2006, pp. 232-242.
[25] V. Parvulescu, C. Anastasescu, C. Constantin, and B. L. Su, “Mono (V, Nb) or bimetallic (V-Ti, Nb-Ti) ions modified MCM-41 catalysts: synthesis, characterization and catalysis in oxidation of hydrocarbons (aromatics and alcohols),” Catalysis Today, Vol. 78, No. 1-4, February 2003, pp. 477-485.
[26] P. Wu, T. Tatsumi, T. Komatsu, and T. Yashima, “A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes,” Journal of Catalysis, Vol. 202, No. 2, September 2001, pp. 245- 255.
[27] X. Gao, and I. E. Wachs, “Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties,” Catalysis Today, Vol. 51, No. 2, June 1999, pp. 233-254.
[28] H. Kochkar, and F. Figueras, “Synthesis of hydrophobic TiO2-SiO2 mixed oxides for the epoxidation of cyclohexene,” Journal of Catalysis, Vol. 171, No. 2, October 1997, pp. 420-430.
[29] M. A. Uguina, D. P. Serrano, G. Ovejero, R Van Grieken., and M. Camacho, “Preparation of TS-1 by wetness impregnation of amorphous SiO2-TiO2 solids: Influence of the synthesis variables,” Applied Catalysis A-General, Vol. 124, No. 2, April 1995, pp. 391-408.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.