[1]
|
Kailath, T. and Sayed, A. (1999) Fast Reliable Algorithms for Matrices with Structure. Society for Industrial and Applied Mathematics, Philadelphia. http://dx.doi.org/10.1137/1.9781611971354
|
[2]
|
Pan, V.Y., Branham, S., Rosholt, R. and Zheng, A. (1999) Newton’s Iteration for Structured Matrices and Linear Systems of Equations, SIAM Volume on Fast Reliable Algorithms for Matrices with Structure. Society for Industrial and Applied Mathematics, Philadelphia.
|
[3]
|
Pan, V.Y., Zheng, A.L., Huang, X.H. and Dias, O. (1997) Newton’s Iteration for Inversion of Cauchy-Like and Other Structured Matrices. Journal of Complexity, 13, 108-124. http://dx.doi.org/10.1006/jcom.1997.0431
|
[4]
|
Bini, D. and Pan, V.Y. (1994) Polynomial and Matrix Computations, Vol. 1 Fundamental Algorithms. Birkhauser, Boston.
|
[5]
|
Pan, V.Y. (2001) Structured Matrices and Polynomials: Unified Superfast Algorithms. Birkhauser, Boston.
|
[6]
|
Kailath, T., Kung, S.-Y. and Morf, M. (1979) Displacement Ranks of Matrices and Linear Equations. Journal of Mathematical Analysis and Applications, 68, 395-407. http://dx.doi.org/10.1016/0022-247X(79)90124-0
|
[7]
|
Kailath, T. and Sayed, A.H. (2002) Displacement Structure: Theory and Applications. SIAM Review, 37, 297-386. http://dx.doi.org/10.1137/1037082
|
[8]
|
Pan, V.Y. and Rami, Y. (2001) Newton’s Iteration for the Inversion of Structured Matrices. In: Bini, D., Tyrtyshnikov, E. and Yalamov, P., Eds., Structured Matrices: Recent Developments in Theory and Computation, Nova Science Publishers, New York, 79-90.
|
[9]
|
Golub, G.H. and Van Loan, C.F. (2013) Matrix Computations. 4th Edition, John Hopkins University Press, Baltimore.
|
[10]
|
Heinig, G. (1995) Inversion of Generalized Cauchy Matrices and the Other Classes of Structured Matrices. The IMA Volume in Mathematics and Its Applications, 69, 63-81.
|
[11]
|
Pan, V.Y. (1993) Decreasing the Displacement Rank of a Matrix. SIAM Journal on Matrix Analysis and Application, 14, 118-121. http://dx.doi.org/10.1137/0614010
|