[1]
|
Ryder, L.H. (1996) Quantum Field Theory. 2nd Edition, Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511813900
|
[2]
|
Spanier, E. (1966) Algebraic Topology. Springer-Verlag, Berlin.
|
[3]
|
Hatcher, A. (2002) Algebraic Topology. Cambridge University Press, Cambridge.
|
[4]
|
Mermin, N. (1979) The Topological Theory of Defects in Ordered Media. Reviews of Modern Physics, 51, 591.
http://dx.doi.org/10.1103/RevModPhys.51.591
|
[5]
|
Prodan, E. (2011) Disordered Topological Insulators: A Non-Commutative Geometry Perspective. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 113001. http://dx.doi.org/10.1088/1751-8113/44/11/113001
|
[6]
|
Hasan, M.Z. and Kane, C.L. (2010) Colloquium: Topological Insulators. Reviews of Modern Physics, 82, 3045-3067.
|
[7]
|
Qi, X.L. and Zhang, S.C. (2011) Topological Insulators and Superconductors. Reviews of Modern Physics, 83, 1057.
http://dx.doi.org/10.1103/RevModPhys.83.1057
|
[8]
|
Thouless, D.J., Kohmoto, M., Nightingale, M.P. and den Nijs, M. (1982) Quantized Hall Conductance in a Two- Dimensional Periodic Potential. Physical Review Letters, 49, 405. http://dx.doi.org/10.1103/PhysRevLett.49.405
|
[9]
|
Berry, M.V. (1984) Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392, 45-57.
|
[10]
|
Nakahara, M. (1990) Geometry, Topology and Physics. Adam Hilger, Bristol.
|
[11]
|
Birman, J.S. (1974) Braids, Links and Mapping Class Groups. Princeton University Press, Princeton.
|
[12]
|
Laidlaw, M.G. and DeWitt, C.M. (1971) Feynman Functional Integrals for Systems of Indistinguishable Particles. Physical Review D, 3, 1375-1378. http://dx.doi.org/10.1103/PhysRevD.3.1375
|
[13]
|
Jacak, J., Józwiak, I. and Jacak, L. (2009) New Implementation of Composite Fermions in Terms of Subgroups of a Braid Group. Physics Letters A, 374, 346-350. http://dx.doi.org/10.1016/j.physleta.2009.10.075
|
[14]
|
Jacak, J., Józwiak, I., Jacak, L. and Wieczorek, K. (2010) Cyclotron Braid Group Structure for Composite Fermions. Journal of Physics: Condensed Matter, 22, Article ID: 355602. http://dx.doi.org/10.1088/0953-8984/22/35/355602
|
[15]
|
Pan, W., Störmer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W. and West, K.W. (2003) Fractional Quantum Hall Effect of Composite Fermions. Physical Review Letters, 90, Article ID: 016801.
http://dx.doi.org/10.1103/PhysRevLett.90.016801
|
[16]
|
Laughlin, R.B. (1983) Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Physical Review Letters, 50, 1395-1398. http://dx.doi.org/10.1103/PhysRevLett.50.1395
|
[17]
|
Haldane, F.D.M. (1983) Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States. Physical Review Letters, 51, 605-608. http://dx.doi.org/10.1103/PhysRevLett.51.605
|
[18]
|
Prange, R.E. and Girvin, S.M. (1990) The Quantum Hall Effect. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-3350-3
|
[19]
|
Laughlin, R.B. (1983) Quantized Motion of Three Two-Dimensional Electrons in a Strong Magnetic Field. Physical Review B, 27, 3383-3389. http://dx.doi.org/10.1103/PhysRevB.27.3383
|
[20]
|
Landau, L.D. and Lifshitz, E.M. (1972) Quantum Mechanics: Non-Relativistic Theory. Nauka, Moscow.
|
[21]
|
Abrikosov, A.A., Gorkov, L.P. and Dzialoshinskii, I.E. (1975) Methods of Quantum Field Theory in Statistical Physics. Dover Publications Inc., Dover.
|
[22]
|
Jain, J.K. (1989) Composite-Fermion Approach for the Fractional Quantum Hall Effect. Physical Review Letters, 63, 199-202. http://dx.doi.org/10.1103/PhysRevLett.63.199
|
[23]
|
Wilczek, F. (1990) Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore City.
http://dx.doi.org/10.1142/0961
|
[24]
|
Wu, Y.S. (1984) General Theory for Quantum Statistics in Two Dimensions. Physical Review Letters, 52, 2103-2106.
http://dx.doi.org/10.1103/PhysRevLett.52.2103
|
[25]
|
Sudarshan, E.C.G., Imbo, T.D. and Govindarajan, T.R. (1988) Configuration Space Topology and Quantum Internal Symmetries. Physics Letters B, 213, 471-476. http://dx.doi.org/10.1016/0370-2693(88)91294-4
|
[26]
|
Avron, J.E., Osadchy, D. and Seiler, R. (2003) A Topological Look at the Quantum Hall Effect. Physics Today, 56, 38- 42.
|
[27]
|
Qi, X.L. and Zhang, S.C. (2010) The Quantum Spin Hall Effect and Topological Insulators. arXiv:1001.1602v1 [cond-mat.mtrl-sci]
|
[28]
|
Wang, Z., Qi, X.L. and Zhang, S.C. (2010) Topological Order Parameters for Interacting Topological Insulators. Physical Review Letters, 105, Article ID: 256803. http://dx.doi.org/10.1103/PhysRevLett.105.256803
|
[29]
|
Qi, X.L. (2011) Generic Wave-Function Description of Fractional Quantum Anomalous Hall States and Fractional Topological Insulators. Physical Review Letters, 107, Article ID: 126803.
http://dx.doi.org/10.1103/PhysRevLett.107.126803
|
[30]
|
Haldane, F.D.M. (1988) Model of Quantum Hall Effect without Landau Levels: Condensed Matter Realization of the “Parity Anomaly”. Physical Review Letters, 61, 2015-2018. http://dx.doi.org/10.1103/PhysRevLett.61.2015
|
[31]
|
Kourtis, S., Venderbos, J.W.F. and Daghofer, M. (2012) Fractional Chern Insulator on a Triangular Lattice of Strongly Correlated t2g Electrons. Physical Review B, 86, Article ID: 235118. http://dx.doi.org/10.1103/PhysRevB.86.235118
|
[32]
|
Parameswaran, S.A., Roy, R. and Sondhi, S.L. (2013) Fractional Quantum Hall Physics in Topological Flat Bands. Comptes Rendus Physique, 14, 816-839. http://dx.doi.org/10.1016/j.crhy.2013.04.003
|
[33]
|
Sun, K., Gu, Z., Katsura, H. and Das Sarma, S. (2011) Nearly Flatbands with Nontrivial Topology. Physical Review Letters, 106, Article ID: 236803. http://dx.doi.org/10.1103/PhysRevLett.106.236803
|
[34]
|
Sheng, D.N., Gu, Z.C., Sun, K. and Sheng, L. (2011) Fractional Quantum Hall Effect in the Absence of Landau Levels. arXiv:1102.2658v1 [cond-mat.str-el]
|