[1]
|
Burden, H.W., Leonard, M., Smith, C.O. and Lawrence Jr., I.E. (1983) The Sensory Innervation of the Ovary: A Horseradish Peroxidase Study in the Rat. Anatomical Record, 207, 623-627.
http://www.ncbi.nlm.nih.gov/pubmed/6670757
http://dx.doi.org/10.1002/ar.1092070410
|
[2]
|
Ojeda, S.R., Costa, M.E., Katz, K.H. and Hersh, L.B. (1985) Evidence for the Existence of Substance P in the Prepubertal Rat Ovary. I. Biochemical and Physiologic Studies. Biology of Reproduction, 33, 286-295.
http://www.ncbi.nlm.nih.gov/pubmed/2412598
|
[3]
|
Lara, H.E., McDonald, J.K. and Ojeda, S.R. (1990) Involvement of Nerve Growth Factor in Female Sexual Development. Endocrinology, 126, 364-375. http://www.ncbi.nlm.nih.gov/pubmed/2293994
|
[4]
|
Dees, W.L., Hiney, J.K., Schultea, T.D., Mayerhofer, A., Danilchik, M., Dissen, G.A. and Ojeda, S.R. (1995) The Primate Ovary Contains a Population of Catecholaminergic Neuron-Like Cells Expressing Nerve Growth Factor Receptors. Endocrinology, 136, 5760-5768. http://www.ncbi.nlm.nih.gov/pubmed/7588334
|
[5]
|
D’Albora, H. and Barcia, J.J. (1996) Intrinsic Neuronal Cell Bodies in the Rat Ovary. Neuroscience Letters, 205, 65-67.
http://www.ncbi.nlm.nih.gov/pubmed/8867022
http://dx.doi.org/10.1016/0304-3940(96)12361-2
|
[6]
|
D’Albora, H., Lombide, P. and Ojeda, S.R. (2000) Intrinsicneurons in the Rat Ovary: An Immunohistochemical Study. Cell and Tissue Research, 300, 47-56. http://www.ncbi.nlm.nih.gov/pubmed/10805074
|
[7]
|
Anesetti, G., Lombide, P., D’Albora, H. and Ojeda, S.R. (2001) Intrinsicneurons in the Human Ovary. Cell and Tissue Research, 306, 231-237. http://www.ncbi.nlm.nih.gov/pubmed/11702234
|
[8]
|
D’Albora, H., Anesetti, G., Lombide, P., Dees, W.L. and Ojeda, S.R. (2002) Intrinsicneurons in the Mammalian Ovary. Microscopy Research and Technique, 59, 484-489. http://www.ncbi.nlm.nih.gov/pubmed/12467023
|
[9]
|
Dees, W.L., Ahmed, C.E. and Ojeda, S.R. (1986) Substance P- and Vasoactive Intestinal Peptide-Containing Fibers Reach the Ovary by Independent Routes. Endocrinology, 119, 638-641. http://www.ncbi.nlm.nih.gov/pubmed/2426085
|
[10]
|
McDonald, J.K., Dees, W.L., Ahmed, C.E., Noe, B.D. and Ojeda, S.R. (1987) Biochemical and Immunocytochemical Characterization of Neuropeptide Y in the Immature Rat Ovary. Endocrinology, 120, 1703-1710.
http://www.ncbi.nlm.nih.gov/pubmed/3552621
|
[11]
|
Ricu, M., Paredes, A., Greiner, M., Ojeda, S.R. and Lara, H.E. (2008) Functional Development of the Ovarian Noradrenergic Innervation. Endocrinology, 149, 50-56. http://www.ncbi.nlm.nih.gov/pubmed/17947351
http://dx.doi.org/10.1210/en.2007-1204
|
[12]
|
Kozlowska, A., Wojtkiewicz, J., Majewski, M. and Jana, B. (2011) Localization of Substance P, Calcitonin Gene Related Peptide and Galanin in the Nerve Fibers of Porcine Cystic Ovaries. Folia Histochemica et Cytobiologica, 49, 622-630. http://www.ncbi.nlm.nih.gov/pubmed/22252756
http://dx.doi.org/10.5603/FHC.2011.0085
|
[13]
|
Aguado, L.I. and Ojeda, S.R. (1984) Ovarian Adrenergic Nerves Play a Role in Maintaining Preovulatory Steroid Secretion. Endocrinology, 114, 1944-1946. http://www.ncbi.nlm.nih.gov/pubmed/6538828
http://dx.doi.org/10.1210/endo-114-5-1944
|
[14]
|
Mayerhofer, A., Dissen, G.A., Costa, M.E. and Ojeda, S.R. (1997) A Role for Neurotransmitters in Early Follicular Development: Induction of Functional Follicle-Stimulating Hormone Receptors in Newly Formed Follicles of the Rat Ovary. Endocrinology, 138, 3320-3329. http://www.ncbi.nlm.nih.gov/pubmed/9231784
|
[15]
|
Luna, F., Cortés, M., Flores, M., Hernández, B., Trujillo, A. and Domínguez, R. (2003) The Effects of Superior Ovarian Nerve Sectioning on Ovulation in the Guinea Pig. Reproductive Biology and Endocrinology, 1, 61.
http://www.ncbi.nlm.nih.gov/pubmed/14561223
http://dx.doi.org/10.1186/1477-7827-1-61
|
[16]
|
Adashi, E.Y. and Hsueh, A.J. (1981) Stimulation of β2-Adrenergic Responsiveness by Follicle-Stimulating Hormone in Rat Granulosa Cells in Vitro and in Vivo. Endocrinology, 108, 2170-2178.
http://www.ncbi.nlm.nih.gov/pubmed/6112134
http://dx.doi.org/10.1210/endo-108-6-2170
|
[17]
|
Dyer, C.A. and Erickson, G.F. (1985) Norepinephrine Amplifies Human Chorionic Gonadotropin-Stimulated Androgen Biosynthesis by Ovarian Theca-Interstitial Cells. Endocrinology, 116, 1645-1652.
http://www.ncbi.nlm.nih.gov/pubmed/3971933
http://dx.doi.org/10.1210/endo-116-4-1645
|
[18]
|
Madekurozwa, M.C. (2008) An Immunohistochemical Study of Ovarian Innervation in the Emu (Dromaius novaehollandiae). Onderstepoort Journal of Veterinary Research, 75, 59-65. http://www.ncbi.nlm.nih.gov/pubmed/18575065
http://dx.doi.org/10.4102/ojvr.v75i1.89
|
[19]
|
Hofmann, P.G., Saldaña, A.B., Van Der Goes, T.F., González del Pliego, M. and Gutiérrez Ospina, G. (2013) Neuroendocrine Cells Are Present in the Domestic Fowl Ovary. Journal of Anatomy, 222, 170-177.
http://dx.doi.org/10.1111/joa.12002
|
[20]
|
Gibb, R. and Kolb, B. (1998) A Method for Vibratome Sectioning of Golgi-Cox Stained Whole Rat Brain. Journal of Neuroscience Methods, 79, 1-4. http://www.ncbi.nlm.nih.gov/pubmed/9531453
http://dx.doi.org/10.1016/S0165-0270(97)00163-5
|
[21]
|
Gómez-Villalobos, M.J., Gordillo, A.C., López, J.R. and Flores, G. (2009) The Utility of the Golgi-Cox Method in the Morphological Characterization of the Autonomic Innervation in the Rat Heart. Journal of Neuroscience Methods, 179, 40-44. http://dx.doi.org/10.1016/j.jneumeth.2009.01.004
|
[22]
|
Koszykowska, M., Calka, J., Gańko, M. and Jana, B. (2011) Long-Term Estradiol-17β Administration Reduces Population of Neurons in the Sympathetic Chain Ganglia Supplying the Ovary in Adult Gilts. Experimental and Molecular Pathology, 91, 353-361. http://dx.doi.org/10.1016/j.yexmp.2011.04.002
|
[23]
|
Jana, B., Rytel, L., Czarzasta, J. and Calka, J. (2013) Reduction of the Number of Neurones in the Caudal Mesenteric Ganglion Innervating the Ovary in Sexually Mature Gilts Following Testosterone Administration. Journal of Neuroendocrinology, 25, 826-838. http://dx.doi.org/10.1111/jne.12057
|
[24]
|
Bukovsky, A., Caudle, M.R. and Svetlikova, M. (2008) Steroid-Mediated Differentiation of Neural/Neuronal Cells from Epithelial Ovarian Precursors in Vitro. Cell Cycle, 7, 3577-3583. http://www.ncbi.nlm.nih.gov/pubmed/19001872
http://dx.doi.org/10.4161/cc.7.22.7101
|
[25]
|
Stimpfel, M., Skutella, T., Cvjeticanin, B., Meznaric, M., Dovc, P., Novakovic, S., Cerkovnik, P., Vrtacnik-Bokal, E. and Virant-Klun, I. (2013) Isolation, Characterization and Differentiation of Cells Expressing Pluripotent/Multipotent Markers from Adult Human Ovaries. Cell and Tissue Research, 354, 593-607.
http://dx.doi.org/10.1007/s00441-013-1677-8
|
[26]
|
Bukovsky, A. (2009) Sex Steroid-Mediated Reprogramming of Vascular Smooth Muscle Cells to Stem Cells and Neurons: Possible Utilization of Sex Steroid Combinations for Regenerative Treatment without Utilization of in Vitro Developed Stem Cells. Cell Cycle, 8, 4079-4084. http://www.ncbi.nlm.nih.gov/pubmed/19946214
http://dx.doi.org/10.4161/cc.8.24.10147
|
[27]
|
Parte, S., Bhartiya, D., Telang, J., Daithankar, V., Salvi, V., Zaveri, K. and Hinduja, I. (2011) Detection, Characterization, and Spontaneous Differentiation in Vitro of Very Small Embryonic-Like Putative Stem Cells in Adult Mammalian Ovary. Stem Cells and Development, 20, 1451-1464. http://dx.doi.org/10.1089/scd.2010.0461
|
[28]
|
Virant-Klun, I., Skutella, T., Stimpfel, M. and Sinkovec, J. (2011) Ovarian Surface Epithelium in Patients with Severe Ovarian Infertility: A Potential Source of Cells Expressing Markers of Pluripotent/Multipotent Stem Cells. Journal of Biomedicine and Biotechnology, 2011, Article ID: 381928. http://dx.doi.org/10.1155/2011/381928
|
[29]
|
Bertrand, P.P., Kunze, W.A., Bornstein, J.C. and Furness, J.B. (1998) Electrical Mapping of the Projections of Intrinsic Primary Afferent Neurons to the Mucosa of the Guinea-Pig Small Intestine. Neurogastroenterology & Motility, 10, 533-541. http://www.ncbi.nlm.nih.gov/pubmed/10050259
http://dx.doi.org/10.1046/j.1365-2982.1998.00128.x
|
[30]
|
Hind, A., Migliori, M., Thacker, M., Staikopoulos, V., Nurgali, K., Chiocchetti, R. and Furness, J.B. (2005) Primary Afferent Neurons Intrinsic to the Guinea-Pig Intestine, Like Primary Afferent Neurons of Spinal and Cranial Sensory Ganglia, Bind the Lectin, IB4. Cell and Tissue Research, 321, 151-157.
http://www.ncbi.nlm.nih.gov/pubmed/15912404
http://dx.doi.org/10.1007/s00441-005-1129-1
|
[31]
|
Chiocchetti, R., Bombardi, C., Mongardi-Fantaguzzi, C., Venturelli, E., Russo, D., Spadari, A., Montoneri, C., Romagnoli, N. and Grandis, A. (2009) Intrinsic Innervation of the Horse Ileum. Research in Veterinary Science, 87, 177- 185. http://dx.doi.org/10.1016/j.rvsc.2009.03.011
|
[32]
|
Mitsui, R. (2010) Immunohistochemical Characteristics of Submucosal Dogiel Type II Neurons in Rat Colon. Cell and Tissue Research, 340, 257-265. http://dx.doi.org/10.1007/s00441-010-0954-z
|
[33]
|
Grider, J.R., Mahavadi, S., Li, Y., Qiao, L.Y., Kuemmerle, J.F., Murthy, K.S. and Martin, B.R. (2009) Modulation of Motor and Sensory Pathways of the Peristaltic Reflex by Cannabinoids. American Journal of Physiology-Gastrointestinal and Liver Physiology, 297, G539-G549. http://dx.doi.org/10.1152/ajpgi.00064.2009
|
[34]
|
Van Nassauw, L., Wu, M., De Jonge, F., Adriaensen, D. and Timmermans, J.P. (2005) Cytoplasmic, but Not Nuclear, Expression of the Neuronal Nuclei (NeuN) Antibody Is an Exclusive Feature of Dogiel Type II Neurons in the Guinea-Pig Gastrointestinal Tract. Histochemistry and Cell Biology, 124, 369-377.
http://www.ncbi.nlm.nih.gov/pubmed/16049694
http://dx.doi.org/10.1007/s00418-005-0019-7
|
[35]
|
Price, T.J. and Flores, C.M. (2007) Critical Evaluation of the Colocalization between Calcitonin Gene-Related Peptide, Substance P, Transient Receptor Potential Vanilloid Subfamily Type 1 Immunoreactivities, and Isolectin B4 Binding in Primary Afferent Neurons of the Rat and Mouse. The Journal of Pain, 8, 263-272.
http://www.ncbi.nlm.nih.gov/pubmed/17113352
http://dx.doi.org/10.1016/j.jpain.2006.09.005
|
[36]
|
Grozdanovic, Z., Baumgarten, H.G. and Brüning, G. (1992) Histochemistry of NADPH-Diaphorase, a Marker for Neuronal Nitric Oxide Synthase, in the Peripheral Autonomic Nervous System of the Mouse. Neuroscience, 48, 225- 235. http://www.ncbi.nlm.nih.gov/pubmed/1374863
http://dx.doi.org/10.1016/0306-4522(92)90351-2
|
[37]
|
Afework, M. and Burnstock, G. (1995) Colocalization of Neuropeptides and NADPH-Diaphorase in the Intra-Adrenal Neuronal Cell Bodies and Fibres of the Rat. Cell and Tissue Research, 280, 291-295.
http://www.ncbi.nlm.nih.gov/pubmed/7781027
http://dx.doi.org/10.1007/BF00307801
|
[38]
|
Chiu, R., Boyle, W.J., Meek, J., Smeal, T., Hunter, T. and Karin, M. (1988) The c-Fos Protein Interacts with c-Jun/ AP-1 to Stimulate Transcription of AP-1 Responsive Genes. Cell, 54, 541-552.
http://www.ncbi.nlm.nih.gov/pubmed/3135940
http://dx.doi.org/10.1016/0092-8674(88)90076-1
|
[39]
|
Mitsui, R. (2011) Immunohistochemical Analysis of Substance P-Containing Neurons in Rat Small Intestine. Cell and Tissue Research, 343, 331-341. http://dx.doi.org/10.1007/s00441-010-1080-7
|
[40]
|
Del Negro, C.A., Pace, R.W. and Hayes, J.A. (2008) What Role Do Pacemakers Play in the Generation of Respiratory Rhythm? Advances in Experimental Medicine and Biology, 605, 88-93.
http://www.ncbi.nlm.nih.gov/pubmed/18085252
http://dx.doi.org/10.1007/978-0-387-73693-8_15
|
[41]
|
Brouns, I., Van Genechten, J., Scheuermann, D.W., Timmermans, J.P. and Adriaensen, D. (2002) Neuroepithelial Bodies: A Morphologic Substrate for the Link between Neuronal Nitric Oxide and Sensitivity to Airway Hypoxia? The Journal of Comparative Neurology, 449, 343-354. http://www.ncbi.nlm.nih.gov/pubmed/12115670
http://dx.doi.org/10.1002/cne.10289
|
[42]
|
Gazzieri, D., Trevisani, M., Tarantini, F., Bechi, P., Masotti, G., Gensini, G.F., Castellani, S., Marchionni, N., Geppetti, P. and Harrison, S. (2006) Ethanol Dilates Coronary Arteries and Increases Coronary Flow via Transient Receptor Potential Vanilloid 1 and Calcitonin Gene-Related Peptide. Cardiovascular Research, 70, 589-599.
http://www.ncbi.nlm.nih.gov/pubmed/16579978
http://dx.doi.org/10.1016/j.cardiores.2006.02.027
|
[43]
|
Luo, X.J., Liu, B., Dai, Z., Yang, Z.C. and Peng, J. (2013) Stimulation of Calcitonin Gene-Related Peptide Release through Targeting Capsaicin Receptor: A Potential Strategy for Gastric Mucosal Protection. Digestive Diseases and Sciences, 58, 320-325.
|
[44]
|
Gangula, P.R., Zhao, H., Supowit, S., Wimalawansa, S., DiPette, D. and Yallampalli, C. (1999) Pregnancy and Steroid Hormones Enhance the Vasodilation Responses to CGRP in Rats. The American Journal of Physiology, 276, H284- H288. http://www.ncbi.nlm.nih.gov/pubmed/9887042
|
[45]
|
Häppölä, O. and Lakomy, M. (1989) Immunohistochemical Localization of Calcitonin Gene-Related Peptide and Bom- besin/Gastrin-Releasing Peptide in Nerve Fibers of the Rat, Guinea Pig and Pig Female Genital Organs. Histochemistry, 92, 211-218. http://www.ncbi.nlm.nih.gov/pubmed/2674071
http://dx.doi.org/10.1007/BF00500920
|
[46]
|
Jarrett, W.A., Price, G.T., Lynn, V.J. and Burden, H.W. (1994) NADPH-Diaphorase-Positive Neurons Innervating the Rat Ovary. Neuroscience Letters, 177, 47-49. http://www.ncbi.nlm.nih.gov/pubmed/7529906
http://dx.doi.org/10.1016/0304-3940(94)90041-8
|
[47]
|
Vizzard, M.A., Erdman, S.L., Förstermann, U. and de Groat, W.C. (1994) Differential Distribution of Nitric Oxide Synthase in Neural Pathways to the Urogenital Organs (Urethra, Penis, Urinary Bladder) of the Rat. Brain Research, 646, 279-291. http://www.ncbi.nlm.nih.gov/pubmed/7520823
http://dx.doi.org/10.1016/0006-8993(94)90090-6
|
[48]
|
Filogamo, G., Biasol, S., Recluta, E. and Vercelli, A. (2002) Increase in the Number of NADPH-Diaphorase-Positive Neurons in the Lumbar Dorsal Root Ganglia Following Lipopolysaccharide Exposure of the Sciatic Nerve. Morphologie, 86, 27-30. http://www.ncbi.nlm.nih.gov/pubmed/12224389
|