[1]
|
Anselm, O.O., Joseph, N.A. and Nduji, A.A. (2014) Characterization and Comparison of Rheological Properties of Agro Fiber Filled High-Density Polyethylene Bio-Composites. Open Journal of Polymer Chemistry, 4, 12-19. http://dx.doi.org/10.4236/ojpchem.2014.41002
|
[2]
|
Mohssine, M., Yves, F. and Mario, F. (2007) A Global Rheological Model of Wood Cantileveras Applied to Wood Drying. Wood Science and Technology, 41, 209-234.
|
[3]
|
Xie, F.W., Halley, P.J. and Avérous, L. (2012) Rheology to Understand and Optimize Processibility, Structures and Properties of Starch Polymeric Materials. Progress in Polymer Science, 37, 595-623.
|
[4]
|
Xiuying Q., Wei L., Hiroshi W., Kang S., Xiaodong, C. (2009) Rheological Behavior of Biocomposites of Silk Fibroin Fiber and Poly(ε-caprolactone): Effect of Fiber Network. Journal of Polymer Science Part B: Polymer Physics, 47, 1957-1970.
|
[5]
|
Zhang, Y., Lim, C.T., Ramakrishna, S. and Huang, Z.M. (2005) Recent Development of Polymer Nanofibers for Biomedical and Biotechnological Applications. Journal of Materials Science: Materials in Medicine, 16, 933-946.
|
[6]
|
http://pioneer.netserv.chula.ac.th/~sanongn1/course.html
|
[7]
|
Marynowski, K. (2006) Two-Dimensional Rheological Element in Modelling of Axially Moving Viscoelastic Web. European Journal of Mechanics—A/Solids, 25, 729-744.
|
[8]
|
Dealy, J.M. and Wissbrun, K.F. (1990) Melt Rheology and Its Role in Plastics Processing—Theory and Applications. Van Nostrand Reinhold, New York.
|
[9]
|
Ansari, M., Hatzikiriakos, S.G. and Mitsoulis, E. (2012) Slip effects in HDPE Flows. Journal of Non-Newtonian Fluid Mechanics, 167-168, 18-29.
|
[10]
|
Ansari, M., Alabbas, A., Hatzikiriakos, S.G. and Mitsoulis, E. (2010) Entry Flow of Polyethylene Melts in Tapered Dies. International Polymer Processing, 25, 287-296.
|
[11]
|
Owens, R.G. and Phillips, T.N. (2002) Computational Rheology. Imperial College Press, London.
|
[12]
|
Han, C. (2007) Rheology and Processing of Polymeric Materials, Vol. 2. Oxford University Press, Oxford.
|
[13]
|
Willett, J.L., Asberg, B.K. and Swanson, C.L. (1995) Rheology of Thermoplastic Starch: Effects of Temperature, Moisture Content, and Additives on Melt Viscosity. Polymer Engineering & Science, 35, 202-210. http://dx.doi.org/10.1002/pen.760350214
|
[14]
|
James, D.F. (2009) Boger Fluids. Annual Review of Fluid Mechanics, 41, 129-142. http://dx.doi.org/10.1146/annurev.fluid.010908.165125
|
[15]
|
Leszek, J. and Andrzej, Z. (2011) Mathematical Modelling of Pneumatic Melt Spinning of Isotactic Polypropylene. Part II. Dynamic Model of Melt Blowing. Fibres & Textiles in Eastern Europe, 16, 17-24.
|
[16]
|
Higashitani, K. and Pritchard, W.G. (1972) A Kinematic Calculation of Intrinsic Errors in Pressure Measurements Made with Holes. Transactions of the Society of Rheology, 16, 687. http://dx.doi.org/10.1122/1.549270
|
[17]
|
Tuna, N.Y. (1984) Finlayson. Journal of Rheology, 2879, 93.
|
[18]
|
Crochet, M.J. and Legat, V. (1992) The Consistent Streamline-Upwind/Petrov-Galerkin Method for Viscoelastic Flow Revisited. Journal of Non-Newtonian Fluid Mechanics, 42, 283-299. http://dx.doi.org/10.1016/0377-0257(92)87014-3
|
[19]
|
Dealy, J. and Wissbrun, K. (1999) Melt Rheology and Its Role in Plastics Processing: Theory and Applications. Kluwer Academic Publishers, Dordrecht.
|
[20]
|
Doraiswamy, D. (1988) The Origins of Rheology. DuPont iTechnologies, Wilmington.
|
[21]
|
Bird, R.B., Armstrong, R.C. and Hassager, O. (1987) Dynamics of Polymeric Liquids, Fluid Mechanics, Vol. 1. Wiley, New York.
|
[22]
|
Tucker III, C.L. and Advani, S.G. (1994) Processing of Short Fiber System. In: Flow and Rheology in Polymer Composites Manufacturing, Elsevier, Amsterdam, 147-202.
|
[23]
|
Grafe, T. and Graham, K. (2003) Polymeric Nanofibers and Nanofiber Webs: A New Class of Nonwovens. International Nonwovens Journal, 12, 51-55.
|
[24]
|
Zhou, C. and Kumar, S. (2010) Thermal Instabilities in Spinning of Viscoelastic Fibers. Journal of Non-Newtonian Fluid Mechanics, 165, 879-891. http://dx.doi.org/10.1016/j.jnnfm.2010.04.009
|
[25]
|
Jayaraman, K., Kotaki, M., Zhang, Y., Mo, X. and Ramakrishna, S. (2004) Recent Advances in Polymer Nanofibers. Journal of Nanoscience and Nanotechnology, 4, 52-65.
|
[26]
|
Letwimolnun, W., Vergnes, B., Ausias, G. and Carreau, P.J. (2007) Stress Overshoots of Organoclay Nanocomposites in Transient Shear Flow. Journal of Non-Newtonian Fluid Mechanics, 141, 167-179.
|
[27]
|
Collie, S.J., Gerritsen, M. and Jackson, P. (2001) A Review of Turbulence Modelling for Use in Sail Flow Analysis. School of Engineering Report No. 603, Auckland.
|
[28]
|
Denn, M.M. (2008) Continuous Drawing of Liquids to Form Fibers. Annual Review of Fluid Mechanics, 12, 365-387. http://dx.doi.org/10.1146/annurev.fl.12.010180.002053
|
[29]
|
Denn, M.M. (2008) Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511813177
|
[30]
|
Krutka, H.M., Shambaugh, R.L. and Papavassiliou, D. (2008) Effects of the Polymer Fiber on the Flow Field from a Slot Melt Blowing Die. Industrial & Engineering Chemistry Research, 47, 935-945. http://dx.doi.org/10.1021/ie070871i
|
[31]
|
Tanner, R.I. (2000) Engineering Rheology. 2nd Edition, Oxford University Press, Oxford.
|
[32]
|
Denn, M.M., Petrie, C.J.S. and Avenas, P. (1975) Mechanics of Steady Spinning of a Viscoelastic Liquid. AIChE Journal, 21, 791-799. http://dx.doi.org/10.1002/aic.690210423
|
[33]
|
Nonaka, A., Trebotich, D., Miller, G.H., Graves, D.T. and Colella, P. (2009) A Higher-Order Upwind Method for Viscoelastic Fluids. Communications in Applied Mathematics and Computational Science, 4, 57-83. http://dx.doi.org/10.2140/camcos.2009.4.57
|
[34]
|
da Silva, L.J., Panzera, T.H., Velloso, V.R., Christoforo, A.L. and Scarpa, F. (2012) Hybrid Polymeric Composites Reinforced with Sisal Fibres and Silica Microparticles. Composites Part B, 43, 3436-3444. http://dx.doi.org/10.1016/j.compositesb.2012.01.026
|
[35]
|
Mitran, S.M. and Yao, L. (2007) A Double Projection Method for Incompressible Viscoelastic Flow. Technical Report, Department of Mathematics University of North Carolina, Chapel Hill.
|
[36]
|
Devereux, B.M. and Denn, M.M. (1994) Frequency Response Analysis of Polymer Melt Spinning. Industrial & Engineering Chemistry Research, 33, 2384-2390. http://dx.doi.org/10.1021/ie00034a020
|
[37]
|
Ellison, C.J., Phatak, A., Giles, D.W., Macosko, C.W. and Bates, F.S. (2007) Melt Blown Nanofibers: Fiber Diameter Distributions and Onset of Fiber Breakup. Polymer, 48, 3306-3316. http://dx.doi.org/10.1016/j.polymer.2007.04.005
|
[38]
|
Fisher, R.J. and Denn, M.M. (1977) Mechanics of Nonisothermal Polymer Melt Spinning. AIChE Journal, 23, 23-28. http://dx.doi.org/10.1002/aic.690230105
|
[39]
|
Ellyin, F., Vaziri, R. and Bigot, L. (2007) Predictions of Two Nonlinear Viscoelastic Constitutive Relations for Polymers under Multiaxial Loadings. Polymer Engineering & Science, 47, 593-607. http://dx.doi.org/10.1002/pen.20731
|
[40]
|
Galante, S.R. (1991) An Investigation of Planar Entry Flow Using a High Resolution Flow Birefringence Method. PhD Thesis, Garnegie Mellon University, Pennsylvania.
|
[41]
|
Burghardt, W.R. and Fuller, G.G. (1989) Note: End Effects in Flow Birefringence Measurements. Journal of Rheology, 33, 771-779. http://dx.doi.org/10.1122/1.550065
|
[42]
|
Kiriakidis, D.G., Park, H.J., Mitsoulis, E., Vergnes, B. and Agassant, J.F. (1989) A Study of Stress Distribution in Contraction Flows of an LLDPE Melt. Journal of Non-Newtonian Fluid Mechanics, 47, 339-356. http://dx.doi.org/10.1016/0377-0257(93)80057-I
|
[43]
|
Tan, D.H., Zhou, C., Ellison, C.J., Kumar, S., Macosko, C.W. and Bates F.S. (2010) Meltblown Fibers: Influence of Viscosity and Elasticity on the Diameter Distribution. Journal of Non-Newtonian Fluid Mechanics, 165, 892-900. http://dx.doi.org/10.1016/j.jnnfm.2010.04.012
|
[44]
|
Leszek, J. and Zbigniew, L. (2009) Mathematical Modelling of Pneumatic Melt Spinning of Isotactic Polypropylene. Part III. Computations of the Process Dynamics. Fibres & Textiles in Eastern Europe, 17, 75-80.
|
[45]
|
Altan, M.C., Advani, S.G., Guceri, S.I. and Pipes, R.B. (1989) On the Description of the Orientation State for Fiber Suspensions in Homogeneous Flows. Journal of Rheology, 33, 1129-1155. http://dx.doi.org/10.1122/1.550047
|
[46]
|
Marders, H., Vergnes, B., Demay, Y. and Agassant, J.F. (1992) Steady Flow of a White-Metzner Fluid in a 2-D Abrupt Contraction: Computation and Experiments. Journal of Non-Newtonian Fluid Mechanics, 45, 63-80. http://dx.doi.org/10.1016/0377-0257(92)80061-2
|
[47]
|
Phan-Thien, N. and Tanner, R.I. (1977) A New Constitutive Equation Derived from Network Theory. Journal of Non-Newtonian Fluid Mechanics, 2, 353-365. http://dx.doi.org/10.1016/0377-0257(77)80021-9
|
[48]
|
Phan-Thien, N. (1978) A Nonlinear Network Viscoelastic Model. Journal of Rheology, 22, 259-283. http://dx.doi.org/10.1122/1.549481
|
[49]
|
Wellington, M., Henrique, T., Admilson, T., Rigoberto, E.M. and André, L. (2007) Numerical Study of a PTT Viscoelastic Fluid Flow through Concentric Annular. 19th International Congress of Mechanical Engineering, Brasília, 5-9 November 2007.
|
[50]
|
Giesekus, H. (1982) A Simple Constitutive Equation for Polymer Fluids Based on the Concept of Deformation-Dependent Tensorial Mobility. Journal of Non-Newtonian Fluid Mechanics, 11, 69-109. http://dx.doi.org/10.1016/0377-0257(82)85016-7
|
[51]
|
Giesekus, H. (1985) Constitutive Equations for Polymer Fluids Based on the Concept of Configuration-Dependent Molecular Mobility: A Generalized Mean-Configuration Model. Journal of Non-Newtonian Fluid Mechanics, 17, 349- 372.
|
[52]
|
Mostafaiyan, M., Khodabandehlou, K. and Sharif, F. (2004) Analysis of a Viscoelastic Fluid in an Annulus Using Giesekus Model. Journal of Non-Newtonian Fluid Mechanics, 118, 49-55. http://dx.doi.org/10.1016/j.jnnfm.2004.01.007
|
[53]
|
Isaki, T., Takahashi, M., Takigawa, T. and Masuda, T. (1991) Comparison between Uniaxial and Biaxial Elongational Flow Behavior of Viscoelastic Fluids as Predicted by Differential Constitutive Equations. Rheologica Acta, 30, 530- 539. http://dx.doi.org/10.1007/BF00444371
|
[54]
|
Yarin, A.L., Sinha-Ray, S. and Pourdeyhimi, B. (2010) Meltblowing: II—Linear and Nonlinear Waves on Viscoelastic Polymer Jets. Journal of Applied Physics, 108, Article ID: 034913. http://dx.doi.org/10.1063/1.3457893
|
[55]
|
Müller, S., Kästner, M., Brummund, J. and Ulbricht, V. (2011) A Nonlinear Fractional Viscoelastic Material Model for Polymers. Computational Materials Science, 50, 2938-2949. http://dx.doi.org/10.1016/j.commatsci.2011.05.011
|
[56]
|
Luo, X.L. and Tanner, R.I. (1987) A Pseudo-Time Integral Method for Non-Isothermal Viscoelastic Flows and Its Application to Extrusion Simulation. Rheologica Acta, 26, 499-507. http://dx.doi.org/10.1007/BF01333733
|
[57]
|
Chauvière, C. and Owens, R.G. (2002) A Robust Spectral Element Method for Simulations of Time-Dependent Viscoelastic Flows, Derived from the Brownian Configuration Field Method. Journal of Scientific Computing, 17, 209-218. http://dx.doi.org/10.1023/A:1015152631360
|
[58]
|
Cirulis, J.T., Keeley, F.W. and James, D.F. (2010) Viscoelastic Properties and Gelation of an Elastin-Like Polypeptide. Journal of Rheology, 53, 1215-1228. http://dx.doi.org/10.1122/1.3177005
|
[59]
|
Oldroyd, J.G. (1950) On the Formulation of Rheological Equations of State. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 200, 523-541. http://dx.doi.org/10.1098/rspa.1950.0035
|
[60]
|
Oliveira, P.J. (2009) Alternative Derivation of Differential Constitutive Equations of the Oldroyd-B Type. Journal of Non-Newtonian Fluid Mechanics, 160, 40-46. http://dx.doi.org/10.1016/j.jnnfm.2008.11.013
|
[61]
|
Byron, R., Bird, R. and Robert, C. (1987) Armstrong, and Ole Hassager, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics. 2nd Edition, John Wiley & Sons, New York.
|
[62]
|
Trebotich, D., Colella, P. and Miller, G.H. (2005) A Stable and Convergent Scheme for Viscoelastic Flow in Contraction Channels. Journal of Computational Physics, 205, 315-342. http://dx.doi.org/10.1016/j.jcp.2004.11.007
|