Analysis of the Temporal and Spatial Evolution of Recovery and Degradation Processes in Vegetated Areas Using a Time Series of Landsat TM Images (1986-2011): Central Region of Chihuahua, Mexico


This paper analyzed the temporal and spatial evolution of vegetation dynamics in various land covers in the basin of the Laguna Bustillos, Region of Cuauhtémoc, Chihuahua, Mexico. We used an NDVI time series for the months of March to April (early spring). The series was constructed from Landsat TM images for the period 1986-2011. The results show an increase of NDVI for vegetated areas, especially in conifer cover, while shrub and grassland showed a positive trend but with lower statistical significance. The increase in minimum temperatures in early spring, during the study period, was the most important factor in explaining the increase of NDVI in vegetated areas. A spatially distributed analysis shows large areas without an NDVI trend, corresponding to areas with sparse vegetation cover (degraded areas). Moreover, there are also areas with a negative trend (loss of vegetation), explained by the exploitation of trees to produce firewood which is mainly carried out by the ejidos in the region. These results help to focus human and financial resources in places where the benefit will be greatest.

Share and Cite:

Alatorre, L. , Sánchez, E. , Amado, J. , Wiebe, L. , Torres, M. , Rojas, H. , Bravo, L. , López, E. and López, E. (2015) Analysis of the Temporal and Spatial Evolution of Recovery and Degradation Processes in Vegetated Areas Using a Time Series of Landsat TM Images (1986-2011): Central Region of Chihuahua, Mexico. Open Journal of Forestry, 5, 162-180. doi: 10.4236/ojf.2015.52016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J. P. (2002). Determination of the Deforestation Rates of the World’s Humid Tropical Forests. Science, 297, 999-1002.
[2] Alatorre, L. C., & Beguería, S. (2009). Identification of Eroded Areas Using Remote Sensing in a Badlands Landscape on Marls in the Central Spanish Pyrenees. Catena, 76, 182-190.
[3] Alatorre, L. C., Beguería, S., & García-Ruiz, J. M. (2010). Regional Scale Modeling of Hillslope Sediment Delivery: A Case Study in Barasona Reservoir Watershed (SPAIN) Using WATEM/SEDEM. Journal of Hydrology, 391, 109-123.
[4] Alatorre, L. C., Beguería, S., & Vicente-Serrano, S. (2011). Evolution of Vegetation Activity on Vegetated, Eroded, and Erosion Risk Areas in the Central Spanish Pyrenees, Using Multitemporal Landsat Imagery. Earth Surface Processes and Landforms, 36, 309-319.
[5] Alatorre, L. C., Beguería, S., Lana-Renault, N., & Navas, A. (2013). Modelización espacialmente distribuida de la erosión y el transporte de sedimento en cuencas de montana del Pirineo aragonés: retos para la calibración y validación. Cuadernos de Investigación Geográfica, 39, 259-285.
[6] Andreu, L., Gutiérrez, E., Macías, M., Ribas, M., Bosch, O., & Camarero, J. J. (2007). Climate Increases Regional Tree-Growth Variability in Iberian Pine Forests. Global Change Biology, 13, 804-815.
[7] Badeck, F. W., Bondeau, A., Bottcher, K., Doktor, D., & Lucht, W. (2004). Responses of Spring Phenology to Climate Change. New Phytologist, 162, 295-309.
[8] Beguería, S., López-Moreno, J. I., Lorente, A., Seeger, M., & García-Ruiz, J. M. (2003). Assessing the Effect of Climate Oscillations and Land-Use Change on Streamflow in the Central Spanish Pyrenees. Ambio, 32, 283-286.
[9] Bravo, L. C., & Castellanos, A. E. (2013). Tendencias del índice de la Diferencia Normalizada de la Vegetación (NDVI) en el estado de Sonora. Implicaciones potenciales sobre el sector pecuario en el contexto del cambio climático. In E. Sánchez, & R. Díaz (Eds.), Dinámicas locales del cambio ambiental global. Aplicaciones de percepción remota y análisis espacial en la evaluación del territorio. Universidad Autónoma de Ciudad Juárez, 245-284.
[10] Chavez, J. (1988). An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data. Remote Sensing of Environment, 24, 459-479.
[11] CONAGUA (2010). Registro Público de Derechos de Agua, Comisión Nacional del Agua. (Recuperado el 15 de octubre de 2010, de
[12] DeFries, R., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D., & Townshend, J. (2002). Carbon Emissions from Tropical Deforestation and Regrowth Based on Satellite Observations for the 1980s and 1990s. Proceedings of the National Academic of Sciences of the United States of America, 99, 14256-14261.
[13] Delbart, N., Le Toan, T., Kergoat, L., & Fedotova, V. (2006). Remote Sensing of Spring Phenology in Boreal Regions: A Free of Snow-Effect Method Using NOAA-AVHRR and SPOT-VGT Data (1982-2004). Remote Sensing of Environment, 101, 52-62.
[14] Eastman (2004). IDRISI Kilimanjaro, Guía para SIG y Procesamiento de Imágenes. Worcester, MA: Clark Labs Clark University.
[15] Farrar, T. J., Nicholson, S. E., & Lare, A. R. (1994). The Influence of Soil Type on the Relationships between NDVI, Rainfall and Soil Moisture in Semiarid Botswana II: NDVI Response to Soil Moisture. Remote Sensing of Environment, 50, 121-133.
[16] Florinsky, I. V., & Kuryakova, G. A. (1996). Influence of Topography on Some Vegetation Cover Properties. Catena, 27, 123-141.
[17] Franklin, K. A., Lyons, K., Nagler, P. L., Lampkin, D., Glenn, E. P., Molina-Freaner, F., & Huete, A. R. (2006). Buffelgrass (Pennisetum ciliare) Land Conversion and Productivity in the Plains of Sonora, Mexico. Biological Conservation, 127, 62-71.
[18] Fuller, D. O. (1998). Trends in NDVI Time Series and Their Relation to Rangeland and Crop Production in Senegal, 1987-1993. International Journal of Remote Sensing, 19, 2013-2018.
[19] Giglio, L., Csiszar, I., & Justice, C. O. (2006). Global Distribution and Seasonality of Active Fires as Observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Sensors. Journal of Geophysical Research, 111, Article ID: G02016.
[20] Hill, J., Stellmes, M., Udelhoven, T., Roder, A., & Sommer, S. (2008). Mediterranean Desertification and Land Degradation. Mapping Related Land Use Change Syndromes Based on Satellite Observations. Global and Planetary Change, 64, 146-157.
[21] Kawabata, A., Ichii, K., & Yamaguchi, Y. (2001). Global Monitoring of Interannual Changes in Vegetation Activities Using NDVI and Its Relationships to Temperature and Precipitation. International Journal of Remote Sensing, 22, 1377-1382.
[22] Lasanta, T., & Vicente-Serrano, S. (2006). Factores en la variabilidad espacial de los cambios en la cubierta vegetal en el Pirieno. Cuadernosde Investigación Geográfica, 32, 57-80.
[23] Lasanta, T., & Vicente-Serrano, S. (2007). Cambios en la cubierta vegetal en el Pirieno Aragonés en los últimos 50 anos. Pirineos, 162, 125-154.
[24] Lasanta, T., & Vicente-Serrano, S. M. (2012). Complex Land Cover Change Processes in Semiarid Mediterranean Regions: An Approach Using Landsat Images in Northeast Spain. Remote Sensing of Environment, 124, 1-14.
[25] Lasanta, T., Vicente-Serrano, S., & Cuadrat, J. M. (2000). Marginación productiva y recuperación de la cubierta vegetal en el Pirineo: Un caso de estudio en el Valle de Borau. Boletín de la Asociación de Geógrafos Espanoles, 29, 5-28.
[26] Lucht, W., Prentice, I. C., Myneni, R. B., Sitch, S., Friedlingstein, P., Cramer, W., Bousquet, P., Buermann, W., & Smith, B. (2002). Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect. Science, 296, 1687-1689.
[27] Martínez-Villalta, J., López, B. C., Adell, N., Badiella, L., & Ninyerola, M. (2008). Twentieth Century Increase of Scots Pine Radial Growth in NE Spain Shows Strong Climate Interactions. Global Change Biology, 14, 2868-2881.
[28] Maselli, F. (2004). Monitoring Forest Conditions in a Protected Mediterranean Coastal Area by the Analysis of Multiyear NDVI Data. Remote Sensing of Environment, 89, 423-433.
[29] Myneni, R. B., Tucker, C. J., Asrar, G., & Keeling, C. D. (1998). Interannual Variations in Satellite-Sensed Vegetation Index Data from 1981 to 1991. Journal of Geophysical Research, 103, 6145-6160.
[30] Olsson, E. G. A., Austrheim, G., & Grenne, S. N. (2000). Landscape Change Patterns in Mountains, Land Use and Environmental Diversity, Mid-Norway 1960-1993. Landscape Ecology, 15, 155-177.
[31] Palá, V., & Pons, X. (1996). Incorporation of Relief in Polynomial-Based Geometric Corrections. Photogrammetric Engineering and Remote Sensing, 61, 935-944.
[32] Pelkey, N. W., Stoner, C. J., & Caro, T. M. (2000). Vegetation in Tanzania: Assessing Long Term Trends and Effects of Protection Using Satellite Imaginery. Biological Conservation, 94, 297-309.
[33] Priego, A. G., Bocco, G., Mendoza, M., & Garrido, A. (2010). Propuesta para la generación semiautomatizada de unidades de paisajes. Serie Planeación Territorial. Morelia: Centro de Investigaciones en Geografía Ambiental, UNAM, 104.
[34] Pueyo, Y., & Beguería, S. (2007). Modelling the Rate of Secondary Succession after Farmland Abandonment in a Mediterranean Mountain Area. Landscape and Urban Planning, 83, 245-254.
[35] Riano, D., Chuvieco, E., Salas, J., & Aguado, I. (2003). Assessment of Different Topographic Corrections in Landsat TM Data for Mapping Vegetation Types. IEEE Transactions on Geoscience and Remote Sensing, 41, 1056-1061.
[36] Riano, D., Ruiz, J. A. M., Isidoro, D., & Ustin, S. L. (2007). Global Spatial Patterns and Temporal Trends of Burned Area between 1981 and 2000 Using NOAA-NASA Pathfinder. Global Change Biology, 13, 40-50.
[37] Romo, J. R. (2006). Conservation and the Changing Pattern of Land Cover and Land Use in Central Sonora Mexico. In Environmental Sciences and Policy (pp. 103). Flagstaff, AZ: Northern Arizona University.
[38] Rouse, J. W., Hass, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation. NASA/GSFC Type III Final Report. Greenbelt, MD: NASA/ GSFC.
[39] Ruimy, A., Sangier, B., & Dediu, G. (1994). Methodology for the Estimation of Terrestrial Primary Production from Remotely Sensed Data. Journal of Geophysical Research, 99, 5263-5283.
[40] Salinas-Zavala, C., Douglas, A., & Díaz, H. (2002). Interannual Variability of NDVI in Northwest Mexico. Associated Climatic Mechanisms and Ecological Implications. Remote Sensing of Environment, 82, 417-430.
[41] Sarris, D., Christodoulakis, D., & Korner, C. (2007). Recent Decline in Precipitation and Tree Growth in the Eastern Mediterranean. Global Change Biology, 13, 1187-1200.
[42] Sellers, P. J. (1985). Canopy Reflectance, Photosynthesis and Transpiration. International Journal of Remote Sensing, 6, 1335-1372.
[43] Shen, M., Tang, Y., Chen, J., Yang, X., Wang, C., Cui, X., Yang1, Y., Han, L., Li, L., Du, J., Zhang, G., & Cong, N. (2014). Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLoS ONE, 9, e88178.
[44] Slayback, D., Pinzon, J., Los, S., & Tucker, C. (2003). Northern Hemisphere Photosynthetic Trends 1982-1999. Global Change Biology, 9, 1-15.
[45] Sluiter, R., & De Jong, S. M. (2007). Spatial Patterns of Mediterranean Land Abandonment and Related Land Cover Transitions. Landscape Ecology, 22, 559-576.
[46] Stohlgren, T. J., Chase, T. N., Pielke, R. A., Kittel, T. G. F., & Baron, J. S. (1998). Evidence That Local Land Use Practices Influence Regional Climate, Vegetation and Stream Flow Patterns in Adjacent Natural Areas. Global Change Biology, 4, 495-504.
[47] Tucker, C. J. (1979). Red and Photographic Infrared Linear Combination for Monitoring Vegetation. Remote Sensing of Environment, 8, 127-150.
[48] Tucker, C. J., & Sellers, P. (1986). Satellite Remote Sensing of Primary Production. International Journal of Remote Sensing, 7, 1395-1416.
[49] Tucker, C. J., Holben, B. N., Elgin, J. H., & McMurtrey, J. E. (1981). Remote Sensing of Total Dry Matter Accumulation in Winter Wheat. Remote Sensing of Environment, 8, 127-150.
[50] Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S. New York: Springer.
[51] Vermote, E. F., Tanré, D., Deuzé, J. L., Herman, M., & Morcrette, J. J. (1997). Second Simulation of the Satellite Signal in the Solar Spectrum, 6s: An Overview. IEEE Transactions on Geoscience and Remote Sensing, 35, 675-686.
[52] Vicente-Serrano, S. M., Cuadrat-Prats, J. M., & Romo, A. (2006b). Aridity Influence on Vegetation Patterns in the Middle Ebro Valley (Spain): Evaluation by Means of AVHRR Images and Climate Interpolation Techniques. Journal of Arid Environments, 66, 353-375.
[53] Vicente-Serrano, S. M., Lasanta, T., & Romo, A. (2004). Analysis of the Spatial and Temporal Evolution of Vegetation Cover in the Spanish Central Pyrenees: The Role of Human Management. Environmental Management, 34, 802-818.
[54] Vicente-Serrano, S. M., Zouber, A., Lasanta, T., & Pueyo, Y. (2012). Dryness Is Accelerating Degradation of Vulnerable Shrublands in Semiarid Mediterranean Environments. Ecological Monographs, 82, 407-428.
[55] Vicente-Serrano, S., Beguería, S., & Lasanta, T. (2006a). Diversidad espacial de la actividad vegetal en campos abandonados del Pirineo espanol: Análisis de los procesos de sucesión mediante imágenes Landsat (1984-2001). Pirineos, 161, 59-84.
[56] Zeng, J., Neelin, D., Lan, K. M., & Tucker, C. J. (1999). Enhancement of Interdecadal Climate Variability in the Sahel by Vegetation Interaction. Science, 286, 1537-1540.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.