Short-Term Assessment of Retreating vs. Advancing Microtidal Beaches Based on the Backshore/Foreshore Length Ratio: Examples from the Basilicata Coasts (Southern Italy)

Abstract

A straightforward conceptual method is proposed to quantitatively assess the seasonal-scale tendency of retreatment or advancement on microtidal beaches by using the backshore/foreshore length ratio. This method is based on measuring the cross-shore profile of a beach when it passes through the “transitional state” that separates the high-from the low-energy season, period during which the morphological characteristics of the beach tend to its equilibrium profile. In order to obtain real measurements of backshore (B) and foreshore (F), the definition of the limits bounding these two important components in subaerial beaches is reviewed and discussed. The approach based on the measurement of the B/F length ratio assumes that foreshore and backshore have equivalent lengths in beaches that approximate to their state of morphodynamic equilibrium (B/F ~ 1). A backshore length exceeding the foreshore length is indicative of a state of beach recession, with a B/F length ratio > 1. When the foreshore length is greater than the backshore length, the shoreline is advancing or, alternatively, it is developing in a state of morphological confinement, i.e. due to the presence of a sea cliff, with a B/F < 1. This practical method is then tested against 36 sand and gravel microtidal beach profiles measured along the coasts of Basilicata, in southern Italy. The various “beach states” are summarised into seven classes (I-VII), each identified from specific value intervals of the B/F length ratio.

Share and Cite:

Longhitano, S. (2015) Short-Term Assessment of Retreating vs. Advancing Microtidal Beaches Based on the Backshore/Foreshore Length Ratio: Examples from the Basilicata Coasts (Southern Italy). Open Journal of Marine Science, 5, 123-145. doi: 10.4236/ojms.2015.51011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bruun, P. (1954) Coastal Erosion and the Development of Beach Profiles. Beach Erosion Board Technical Memo, No. 44, US Army Engineer Waterways Experiment Station, Vicksburg.
[2] Dean, R.G. (1977) Equilibrium Beach Profiles: US Atlantic and Gulf Coasts. Ocean Engineering Report, No. 12, University of Delaware, Newark.
[3] Emery, K.O. (1961) A Simple Method of Measuring Beach Profiles. Limnology and Oceanography, 6, 90-93. http://dx.doi.org/10.4319/lo.1961.6.1.0090
[4] Krause, G. (2004) The “Emery-Method” Revisited—Performance of an Inexpensive Method of Measuring Beach Profiles and Modifications. Journal of Coastal Research, 20, 340-346.
http://dx.doi.org/10.2112/1551-5036(2004)20[340:TEROAI]2.0.CO;2
[5] Karunarathna, H., Horrillo-Caraballo, J.M., Reeve, D.E. and Spivack, M. (2011) Analysis of Key Parameters in a Diffusion Type Beach Profile Evolution Model. Continental Shelf Research, 31, 98-107.
http://dx.doi.org/10.1016/j.csr.2010.11.008
[6] Woodroffe, C.D. (2003) Coasts, Form, Process and Evolution. Cambridge University Press, Cambridge.
[7] Bird, E.C.F. (2008) Coastal Geomorphology: An Introduction. 2nd Edition, John Wiley & Sons, New York.
[8] Bird, E.C.F. (2003) The World’s Coasts: Online. An Electronic Encyclopedia. Springer, Dordrecht.
[9] Walker, R.G. and Plint, A.G. (1992) Wave-and Storm-Dominated Shallow Marine Systems. In: Walker, R.G. and James, N.P., Eds., Facies Models: Response to Sea Level Change, Geological Association of Canada, Newfoundland, 219-238.
[10] Clark, J.R. (1996) Coastal Zone Management Handbook. Lewis Publishers, Boca Raton.
[11] Elliott, T. (1986) Clastic Shorelines. In: Reading, H.G., Ed., Sedimentary Environments and Facies, Blackwell, Oxford, 113-154.
[12] Davis Jr., R.A. (1985) Beach and Nearshore Zone, Coastal Sedimentary 557 Environments. In: Davis Jr., A. and Richard, R.A., Eds., Coastal Sedimentary Environments, Springer-Verlag, New York, 379-443.
[13] Davidson-Arnott, R. (2005) Beach and Nearshore Instrumentation. In: Schwartz, M.L., Ed., Encyclopedia of Coastal Science, Springer, Dordrecht, 130-138.
[14] Davidson-Arnott, R. (2010) Introduction to Coastal Processes and Geomorphology. Cambridge University Press, Cam- bridge.
[15] Morton, R.A. (1979) Temporal and Spatial Variations in Shoreline Changes and Their Implications, Examples from the Texas Gulf Coast. Journal of Sedimentary Petrology, 49, 1101-1111.
[16] Komar, P.D. (1998) Beach Processes and Sedimentation. 2nd Edition, Prentice-Hall, Englewood-Cliffs.
[17] Hayes, M.O. (1979) Barrier Island Morphology as a Function of Tidal 583 and Wave Regime. In: Latherman, S.P., Ed., Barrier Island—From the Gulf of St. Lawrence to the Gulf of Mexico, Academic Press, New York, 1-71.
[18] Clifton, H.E., Hunter, R.E. and Phillips, R.L. (1971) Depositional Structures and Processes in the Non-Barred, High- Energy Nearshore. Journal of Sedimentary Petrology, 41, 711-726.
[19] Bourgeois, J. and Leithold, E. (1984) Wave-Worked Conglomerates—Depositional Processes and Criteria for Recognition. In: Koster, E.H. and Steel, R.J., Eds., Sedimentology of Gravels and Conglomerates, Memories Canadian Society Petroleum Geologists, Vol. 10, 331-343.
[20] Dean, R.G. and Darlymple, R.A. (2004) Coastal Processes, with Engineering Applications. Cambridge University Press, Cambridge.
[21] Evans, O.F. (1940) The Low and Ball of the East-Shore of Lake Michigan. Journal of Geology, 48, 467-511. http://dx.doi.org/10.1086/624905
[22] King, C.A.M. and Williams, W.W. (1949) The Formation and Movement of Sand Bars by Wave Action. Geographical Journal, 113, 70-85. http://dx.doi.org/10.2307/1788907
[23] Davis Jr., R.A., Fox, W.T., Hayes, M.O. and Boothroyd, J.C. (1972) Comparison of Ridge and Runnel Systems in Ti- dal and Non-Tidal Environments. Journal of Sedimentary Petrology, 42, 413-421.
[24] Leatherman, S.P., Whitman, D. and Zhang, K. (2005) Coastal Erosion Hazard Mapping Using LIDAR (Airborne Laser Altimetry Technology). In: Schwartz, M.L., Ed., Encyclopedia of Coastal Science, Kluwer Academic Publishers, Dor- drecht, 21-24.
[25] Hanamgond, P.T. and Mitra, D. (2008) Evolution of Malvan Coast, Konkan, West Coast of India—A Case Study Using Remote Sensing Data. Journal of Coastal Research, 24, 672-678.
http://dx.doi.org/10.2112/06-0692.1
[26] Darke, I., Davidson-Arnott, R. and Ollerhead, J. (2009) Measurement of Beach Surface Moisture Using Surface Bright- ness. Journal of Coastal Research, 25, 248-256. http://dx.doi.org/10.2112/07-0905.1
[27] Short, A.D. (1993) Beach and Surf Zone Morphodynamics. Journal of Coastal Research, 15, 25-37.
[28] Short, A.D. (1999) Beach and Shoreface Morphodynamics. John Wiley and Sons, Chichester.
[29] Cooper, N.J., Leggett, D.J. and Lowe, J.P. (2000) Beach-Profile Measurement, Theory and Analysis: Practical Guidance and Applied Case Studies. Water and Environment Journal, 14, 79-88.
http://dx.doi.org/10.1111/j.1747-6593.2000.tb00231.x
[30] Smith, R.K. and Benson, A.P. (2001) Beach Profile Monitoring: How Frequent Is Sufficient? Journal of Coastal Research, 34, 573-579.
[31] Delgado, I. and Lloyd, G. (2004) A Simple Low Cost Method for One Person Beach Profiling. Journal of Coastal Research, 20, 1246-1252. http://dx.doi.org/10.2112/03-0067R.1
[32] King, C.A.M. (1959) Beaches and Coasts. Edward Arnold, London.
[33] Ottmann, F. (1965) Géologie marine et litorale. Masson, Paris.
[34] Ingle, J.C. (1966) The Movement of Beach Sand. Elsevier, Amsterdam.
[35] Shepard, F.P. (1967) Submarine Geology. Harper International Edition, New York.
[36] Shepard, F.P. (1973) Submarine Geology. Harper and Row, New York.
[37] Carobene, L. and Brambati, A. (1975) Metodo per l’analisi morfologica quantitativa delle spiagge. Bollettino Società Geo- logica Italiana, 94, 479-493.
[38] Howard, J.D. and Reineck, H.E. (1981) Depositional Facies of High-Energy Beach-to-Offshore Sequence: Comparison with Low-Energy Sequence. American Association of Petroleum Geologists Bulletin, 65, 807-830.
[39] US Army Corps of Engineers (1984) Shore Protection Manual. Coastal Engineering Research Center, US Government Printing Office, Washington DC, 3.
[40] US Army Corps of Engineers (1995) Coastal Geology. Coastal Engineering Research Center, US Government Printing Office, Washington DC, 4.
[41] Schwartz, M.L. (2005) Encyclopedia of Coastal Science. Springer, Dordrecht.
http://dx.doi.org/10.1007/1-4020-3880-1
[42] Mase, H. (1989) Random Wave Run-Up Height on Gentle Slopes. Journal of Waterway, Port, Coastal, and Ocean Engineering, 115, 649-661. http://dx.doi.org/10.1061/(ASCE)0733-950X(1989)115:5(649)
[43] Nielsen, P. and Hanslow, D.J. (1991) Wave Run-Up Distributions on Natural Beaches. Journal of Coastal Research, 7, 1139-1152.
[44] Sorensen, R.M. (1997) Basic Coastal Engineering. Chapman and Hall, New York.
[45] ARC (2000) Coastal Hazard Strategy and Coastal Erosion Manual. Auckland Regional Council Technical, Auckland, 130.
[46] Bell, R.G. and Gorman, R.M. (2003) Coastal Hazards. Ministry of Civil Defence and Emergency Management, Wellington, Tephra, 20, 21-26.
[47] Pirazzoli, P.A., Stiros, S.C., Arnold, M., Laborel, J. and Laborel-Deguen, F. (1999) Late Holocene Coseismic Vertical Displacements and Tsunami Deposits Near Kynos, Gulf of Euboea, Central Greece. Physics and Chemistry of the Earth, 24, 361-367. http://dx.doi.org/10.1016/S1464-1895(99)00042-3
[48] Mastronuzzi, G. and Sansò, P. (2000) Boulders Transport by Catastrophic Waves along the Ionian Coast of Apulia (Sou- thern Italy). Marine Geology, 170, 93-103.
http://dx.doi.org/10.1016/S0025-3227(00)00068-2
[49] Dominey-Howes, D., Cundy, A. and Croudace, I. (2000) High Energy Marine Flood Deposits on Astypalaea Island, Greece: Possible Evidence for the AD 1956 Southern Aegean Tsunami. Marine Geology, 163, 303-315. http://dx.doi.org/10.1016/S0025-3227(99)00100-0
[50] de Lange, W.P. and Moon, V.G. (2005) Estimating Long-Term Cliff Recession Rates from Shore Platform Widths. En- gineering Geology, 80, 292-301. http://dx.doi.org/10.1016/j.enggeo.2005.06.004
[51] Carobene, L. and Dai Pra, G. (1991) Middle and Upper Pleistocene Sea Level Highstands along the Tyrrhenian Coast of Basilicata (Southern Italy). Il Quaternario Italian Journal of Quaternary Sciences, 4, 173-202.
[52] Cocco, E., Cravero, E., Di Geronimo, S.I., Mezzadri, G., Parea, G.C., Pescatore, T., Valloni, R. and Vinci, A. (1975) Linea- menti geomorfologici e sedimentologici del litorale alto ionico (Golfo di Taranto). Bollettino della Societa Geologica Italiana, 94, 993-1051.
[53] Parea, G.C., Fontana, D., Valloni, R. and Vinci, A. (1980) Dispersione dei sedimenti ed evoluzione della costa fra Capo Spulico e Taranto durante il Quaternario. Geografia Fisica e Dinamica Quaternaria, 3, 3-15.
[54] Sabato, L., Longhitano, S.G., Gioia, D., Cilumbriello, A. and Spalluto, L. (2012) Sedimentological and Morpho-Evo- lution Maps of the “Bosco Pantano di Policoro” Coastal System (Gulf of Taranto, Southern Italy). Journal of Maps, 8, 304-311. http://dx.doi.org/10.1080/17445647.2012.722791
[55] Schiattarella, M., Giano, S.I., Longhitano, S.G. and Beneduce, P. (2010) La costa della Basilicata ionica. In: Ginesu, S., Ed., La costa d’Italia, Il Mar Ionio, Carlo Delfino Editore, Sassari, 249-268.
[56] Mauro, A. (2004) La vulnerabilità dei sistemi costieri-il potenziale trasporto solido litoraneo in prossimità della foce del fiume Basento. In: Coste: Prevenire, Programmare, Pianificare, Collana Editoriale di Studi e Ricerche dell’AdB Basilicata, 29-44.
[57] Vita, M., Bulfaro, M., Cavuoti, C., Pagliaro, S., Biscione, A. and Valanzano, A. (2006) Evoluzione del litorale ionico lucano tra le foci dei fiumi Sinni e Bradano. Collana Editoriale di Studi e Ricerche dell’Autorità di Bacino della Basi- licata.
[58] Sabato, L., Longhitano, S.G., Cilumbriello, A., Gioia, D. and Spalluto, L. (2010) Relazione sullo stato di avanzamento del progetto ProviDune (LIFE07NAT/IT/000519). Conservazione e ripristino di habitat dunali nei siti delle province di Cagliari, Matera e Caserta.
[59] Kulkarni, C.D., Levoy, F., Monfort, O. and Miles, J. (2004) Morphological Variations of a Mixed Sediment Beachface (Teignmouth, UK). Continental Shelf Research, 24, 1203-1218.
http://dx.doi.org/10.1016/j.csr.2004.03.005
[60] Horn, D.P. and Walton, S.M. (2007) Spatial and Temporal Variations of Sediment Size on a Mixed Sand and Gravel Beach. Sedimentary Geology, 202, 509-528. http://dx.doi.org/10.1016/j.sedgeo.2007.03.023
[61] Bluck, B.J. (1967) Sedimentation of Beach Gravels: Examples from South Wales. Journal of Sedimentary Petrology, 37, 128-156.
[62] Orford, J.D. (1977) A Proposed Mechanism for Beach Sedimentation. Earth Surface Processes, 2, 381-400. http://dx.doi.org/10.1002/esp.3290020409
[63] Williams, T. and Caldwell, E. (1988) Particle Size and Shape in Pebble-Beach Sedimentation. Marine Geology, 82, 199-215. http://dx.doi.org/10.1016/0025-3227(88)90141-7
[64] Breil, M., Catenacci, M. and Travisi, C. (2007) Impatti del cambiamento climatico 530 sulle zone costiere: Quanti- ficazione economica di impatti e di misure di adattamento—Sintesi di risultati e indicazioni metodologiche per la ricerca futura.
[65] Simeoni, F. (2007) L’esperienza del Progetto: Rischio per Erosione dei Litorali Italiani. Workshop “Cambiamenti cli- matici e rischio costiero”, Palermo, 27-28 giugno 2007, 27-29.
[66] FEEM, ENEA (2003) La risposta al cambiamento climatico in Italia. Rapporto Enea—Ministero Ambiente e Territorio, Roma.
[67] Longhitano, S.G. and Colella, A. (2007) Geomorphology, Sedimentology and Recent Evolution of the Anthropoge- nically Modified Simeto River Delta System (Eastern Sicily, Italy). Sedimentary Geology, 194, 195-221. http://dx.doi.org/10.1016/j.sedgeo.2006.06.004
[68] Griggs, G.B. and Trenhaile, A.S. (1994) Coastal Cliffs and Platforms. In: Carter, R.W.G. and Woodroffe, C.D., Eds., Coastal Evolution: Late Quaternary Shoreline Morphodynamics, Cambridge University Press, Cambridge, 425-450.
[69] Spilotro, G., Di Bratto, M., Cecilia, G. and Leandro, G. (1998) Evoluzione recente del litorale alto Jonico compreso tra foce Sinni e foce Bradano. Atti del dipartimento di Strutture, Geotecnica e Geologia Applicata, Potenza, Università della Basilicata 1/98, 1-46.
[70] Spilotro, G., Canora, F., Caporale, F. and Leandro, G. (2004) Interventi nei bacini e dinamica delle coste. In: Processo di interrimento degli invasi: Genesi effetti ed interventi per la tutela dell’ambiente, Collana Editoriale di Studi e Ricerche dell’Autorità di Bacino della Basilicata, 239-270.
[71] Cocco, E., De Pippo, T., De Lauro, M. and Monda, C. (1988) Focus erosivi sul litorale metapontino (Golfo di Taranto). Memorie Società Geologica Italiana, 41, 703-709.
[72] Cooper, J.A.G., McKenna, D.W.T. and O’Connor, M. (2007) Mesoscale Coastal Behavior Related to Morphological Self-Adjustment. Geology, 35, 187-190. http://dx.doi.org/10.1130/G23016A.1
[73] Tanner, W.F. (1982) Equilibrium Shoreline. In: Schwartz, M.L., Ed., The Encyclopedia of Beaches and Coastal En- vironments, Hutchinson-Ross, Stroudsburg, 391-392.
[74] Dott, R.H. (1982) Episodic Sedimentation: How Normal Is Average? How Rare Is Rare? Does It Matter? Journal of Sedimentary Research, 53, 5-23.
http://dx.doi.org/10.1306/212F8148-2B24-11D7-8648000102C1865D
[75] Dott, R.H. and Bourgeois, J. (1982) Hummocky Stratification: Significance of Its Variable Bedding Sequences. Geo- logical Society of America Bulletin, 93, 663-680.
http://dx.doi.org/10.1130/0016-7606(1982)93<663:HSSOIV>2.0.CO;2
[76] Niedoroda, A.W., Swift, D.J.P. and Thorne, J.A. (1989) Modeling Shelf Storm Beds: Controls of Bed Thickness and Bedding Sequence. In: Morton, R.A. and Nummedal, D., Eds., Shelf Sedimentation, Shelf Sequences and Related Hydrocarbon Accumulation, Proceedings of the Gulf Coast Section, SEPM 7th Annual Research Conference, Tulsa, 15-39.
[77] Storms, J.E.A., Weltje, G.J., Van Dijke, J.J., Geel, C.R. and Kroonenberg, S.B. (2002) Process-Response Modeling of Wave-Dominated Coastal Systems: Simulating Evolution and Stratigraphy on Geological Timescales. Journal of Sedimentary Research, 72, 226-239. http://dx.doi.org/10.1306/052501720226
[78] Storms, J.E.A. (2003) Event-Based Stratigraphic Simulation of Wave-Dominated Shallow-Marine Environments. Marine Geology, 199, 83-100. http://dx.doi.org/10.1016/S0025-3227(03)00144-0
[79] De Vroeg, J.H., Smith, E.S.P. and Bakker, W.T. (1988) Coastal Genesis. Proceedings of the 21st International Conference on Coastal Engineering, ASCE, New York, 2825-2839.
[80] Stive, M.J.F. and De Vriend, H.J. (1995) Modelling Shoreface Profile Evolution. Marine Geology, 126, 235-248. http://dx.doi.org/10.1016/0025-3227(95)00080-I
[81] Neill, S.P., Elliott, A.J. and Hashemi, M.R. (2008) A Model of Inter-Annual Variability in Beach Levels. Continental Shelf Research, 28, 1769-1781. http://dx.doi.org/10.1016/j.csr.2008.04.004
[82] Pilkey, O.H., Young, R.S., Riggs, S.R., Sam Smith, A.W., Wu, H. and Pilkey, W.D. (1993) The Concept of Shoreface Profile of Equilibrium: A Critical Review. Journal of Coastal Research, 9, 255-278.
[83] Elliot, I.G. and Clarke, D.J. (1982) Seasonal and Biennial Fluctuation in Subaerial Beach Sediment Volume on Warilla Beach, New South Wales. Marine Geology, 48, 89-103.
http://dx.doi.org/10.1016/0025-3227(82)90131-1
[84] Dubois, R.N. (1988) Seasonal Changes in Beach Topography and Beach Volume in Delaware. Marine Geology, 81, 79-96. http://dx.doi.org/10.1016/0025-3227(88)90019-9
[85] Dean, R.G. (1990) Equilibrium Beach Profile: Characteristics and Applications. Journal of Coastal Research, 7, 53-84.
[86] Hardisty, J. (1990) Beaches: Form and Processes. Unwin Hyman, London.
[87] Inman, D.L., Elwany, M.H.S. and Jenkins, S.A. (1993) Shorerise and Bar-Berm Profiles on Ocean Beaches. Journal of Geophysical Research, 98, 18181-18199. http://dx.doi.org/10.1029/93JC00996

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.