Direct Organogenesis from Cotyledonary Node Explants of Cucurbita pepo (L.)—An Important Zucchini Type Vegetable Crop


Cotyledonary node explants from 3 - 5-d-old seedling derived explants of Cucurbita pepo (L.) produced multiple shoots in Murashige and Skoog (MS) salts B5 vitamins containing medium in the presence of N6-benzylamino-purine BAP 1 mg/L + Thidiazuron TDZ 0.05 mg/L. After 4 weeks explants were subcultured to medium containing MS salts B5 Vitamins BAP 0.5 mg/L, Gibberellic acid GA3 1 mg/L and L-Glutamine 15 mg/L. Periodic excision of regenerated shoots from the explants increased shoot efficiency during subculture. The combination of L-Glutamine with BA and GA3 significantly increased the shoot proliferation. Elongated shoots were excised from shoot clumps and transferred to rooting medium containing indole-3-butyric acid (IBA, 1.0 mg/L). The rooted plants were hardened in small pot containing standardized garden soil, well developed plant transferred to greenhouse and survival rate was 85%.

Share and Cite:

Mookkan, M. (2015) Direct Organogenesis from Cotyledonary Node Explants of Cucurbita pepo (L.)—An Important Zucchini Type Vegetable Crop. American Journal of Plant Sciences, 6, 157-162. doi: 10.4236/ajps.2015.61018.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Esteras, C., Nuez, F. and Picó, B. (2012) Genetic Diversity Studies in Cucurbits Using Molecular Tools. In: Behera, T.K., Wang, Y.H. and Kole, C., Eds., Genetics, Genomics and Breeding of Cucurbits, New Hampshire, Science Publishers Inc, Enfield, 140-198.
[2] Ferriol, M. and Picó, B. (2008) Pumpkin and Winter Squash. In: Prohens, J. and Nuez, F., Eds., Handbook of Plant Breeding Vegetables I Part 4, Volume 1, Springer, Berlin, 317-349.
[3] Kostalova, Z., Hromadkova, Z. and Ebringerova, A. (2009) Chemical Evaluation of Seeded Fruit Biomass of Oil Pumpkin (Cucurbita pepo L. var. Styriaca). Chemical Paper, 63, 406-413.
[4] Kurozawa, C. and Pavan, M.A. (1997) Doenças das cucurbitáceas. In: Kimathi, H., Amorin, L., Bergamin, Filho, A., Camargo, L. and Rezende, J., Eds., Manual de Fitopatologia, doenças das plantascultivadas, 3rd Edition, São Paulo, Editora Agronômica Ceres, 2, 325-337.
[5] Gaba, V., Zelcer, A. and Gal-on, A. (2004) Cucurbit Biotechnology—The Importance of Virus Resistance. In Vitro Cellular and Developmental Biology-Plant, 40, 346-358.
[6] Jelaska, S. (1972) Embryoid Formation by Fragments of Cotyledons and Hypocotyls in Cucurbita pepo. Planta, 103, 278-280.
[7] Jelaska, S., Magnus, V., Seretin, M. and Lacan, G. (1985) Induction of Embryogenic Callus in Cucurbita pepo Hypocotyl Explants Byindole-3-ethanol and Its Sugar Conjugates. Physiologia Plantarum, 64, 237-242.
[8] Chee, P.P. (1991) Somatic Embryogenesis and Plant Regeneration of Squash Cucurbita pepo L. cv. YC 60. Plant Cell Reports, 9, 620-622.
[9] Chee, P.P. (1992) Initiation and Maturation of Somatic Embryos of Squash (Cucurbita pepo). HortScience, 27, 59-60.
[10] Gonsalves, C., Xue, B. and Gonsalves, D. (1995) Somatic Embryogenesis and Regeneration from Cotyledon Explants of Six Squash Cultivars. HortScience, 30, 1295-1297.
[11] Ananthakrishnan, G., Xia, X., Elman, C., Singer, S., Paris, H., Gal-On, A. and Gaba, V. (2003) Shoot Production in Squash (Cucurbita pepo) by in Vitro Organogenesis. Plant Cell Reports, 21, 739-746.
[12] Kathiravan, K., Vengedesan, G., Singer, S., Steinitz, B., Paris, H.S. and Gaba, V. (2006) Adventitious Regeneration in Vitro Occurs across a Wide Spectrum of Squash (Cucurbita pepo) Genotypes. Plant Cell, Tissue and Organ Culture, 85, 285-295.
[13] Ananthakrishnan, G., Xia, X., Amutha, S., Singer, S., Muruganantham, M., Yablonsky, S., Fischer, E. and Gaba, V. (2007) Ultrasonic Treatment Stimulates Multiple Shoot Regeneration and Explant Enlargement in Recalcitrant Squash Cotyledon Explants in Vitro. Plant Cell Reports, 26, 267-276.
[14] Amutha, S., Muruganantham, M., Ananthakrishnan, G., Yablonsky, S., Singer, S. and Gaba, V. (2009) Improved Shoot Regeneration Due to Prolonged Seed Storage. Scientia Horticulturae, 119, 117-119.
[15] Murashige, M. and Skoog, F. (1962) A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497.
[16] Muruganantham, M., Amutha, S., Selvaraj, N., Vengadesan, G. and Ganapathi, A. (2007) Efficient Agrobacterium-Mediated Transformation of Vigna mungo Using Immature Cotyledonary-Node Explants and Phosphinothricin as the Selection Agent. In Vitro Cellular & Developmental Biology-Plant, 43, 550-557.
[17] Muruganantham, M., Ganapathi, A., Selvaraj, N., Prem Anand, R., Vasudevan, A. and Vengadesan, G. (2002) Adenine Sulphate and L-Glutamine Enhance Multiple Shoot Induction from Cotyledon Explants of Melon (Cucumis melo L. cv. Swarna). Cucurbit Genetics Cooperative Report, 25, 22-24.
[18] Curuk, S., Elman, C., Schlarman, E., Sagee, O., Shomer, I., Cetiner, S., Gray, D.J. and Gaba, V. (2002) A Novel Pathway for Rapid Shoot Regeneration from the Proximal Zone of the Hypocotyl of Melon (Cucumis melo L.). In Vitro Cellular & Developmental Biology-Plant, 38, 260-267.
[19] Shakti, P.P., Iftikhar, A., Anisuzzaman, M., Kanak Kanti, S., Shamima Akhtar, S. and Mohammad Firoz, A. (2007) Indirect Organogenesis in Summer Squash Cucurbita pepo L. Turkish Journal of Agriculture and Forestry, 31, 63-70.
[20] Meng, Z. and Hongwen, C. (2001) Stimulatory Effects of Different Cytokinin on Direct Plant Regeneration from Cotyledon Explants in Cucumis sativus L. Cucurbit Genetics Cooperative Report, 24, 13-16.
[21] Sujatha, D., Ravi, C., Raghuvardhan, L., Prasad, B., Gulab, K.R., Sadanandam, A. and Christopher, R.T. (2013) In Vitro Plantlet Regeneration and Genetic Transformation of Sponge Gourd (Luffa cylindrica L.). African Journal of Plant Science, 7, 244-252.
[22] Chaturvedi, R. and Bhatnagar, S.P. (2001) High Frequency Shoot Regeneration from Cotyledon Explants of Watermelon cv. Sugar Baby. In Vitro Cellular & Developmental Biology-Plant, 37, 255-258.
[23] Vengadesan, G., Ganapathi, A., Anand, R.P. and Selvarar, N. (2003) In Vitro Propagation of Acacia sinuata (Lour.) Merr. from Nodal Segments of a 10-Year-Old Tree. In Vitro Cellular & Developmental Biology-Plant, 39, 409-414.
[24] Amutha, S., Muruganantham, M. and Ganapathi, A. (2006) Thidiazuron-Induced High-Frequency Axillary and Adventitious Shoot Regeneration in Vigna radiate (L.) Wilczek. In Vitro Cellular & Developmental Biology-Plant, 42, 26-30.
[25] Lata, H., Chandra, S., Khan, I. and ElSohly, M.A. (2009) Thidiazuron-Induced High-Frequency Direct Shoot Organogenesis of Cannabis sativa L. In Vitro Cellular & Developmental Biology-Plant, 45, 12-19.
[26] Muruganantham, M. and Ganapathi, A. (2014) AgNO3 Boosted High-Frequency Shoot Regeneration in Vigna mungo (L.) Hepper. Plant Signaling and Behavior, 9, e972284.
[27] Bayley, J.M., King, J. and Gamborg, O.L. (1972) The Effect of the Source of Inorganic Nitrogen on Growth and Enzymes of Nitrogen Assimilation in Soybean and Wheat Cells in Suspension Cultures. Planta, 105, 15-24.
[28] Selvaraj, N., Vengadesan, G., Vasudevan, A., Prem, A.R., Ramesh, A.V. and Ganapathi, A. (2002) Micropropagation of Cucumis sativus L. from Field Grown Plants. In: Maynard, D.N., Ed., Proceedings of the Cucurbitaceae, ISHS Press, Belgium, 149-156.
[29] Wang, S., Tang, L. and Chen, F. (2001) In Vitro Flowering of Bitter Melon. Plant Cell Reports, 20, 393-397.
[30] Sarowar, S., Oh, H.Y., Hyung, N.I., Min, B.W., Harn, C.H., Yang, S.K., Ok, S.H. and Shin, J.S. (2003) In Vitro Micropropagation of a Cucurbita Interspecific Hybrid Cultivar—A Root Stock Plant. Plant Cell, Tissue and Organ Culture, 75, 179-182.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.