Stock and Flow of Carbon in Plant Woody Debris in Two Different Types of Natural Forests in Bateke Plateau, Central Africa

DOI: 10.4236/ojf.2015.51005   PDF   HTML   XML   3,217 Downloads   3,883 Views   Citations


In order to know the role of plant woody debris in the carbon cycle, a study of carbon stocks and carbon flow of plant woody debris was conducted in the natural forests of the centre of the republic of Congo in the Bateke Plateau. Allometric equations were used to measure the carbon stock of in dead wood debris of Lesio-louna tropical rainforest. Three plots of 40 m × 40 m were delimited in each forest types. All plots were within 300 m of each other. The average stocks of carbon in coarse woody debris obtained are 10993 g·m-2 and 14172 g·m-2, respectively, in the Gallery forest (GF) and the hill-slope forest clump (HF), the difference of carbon stock between the two forests is not significant (p = 0.78). The interannual mean flow in both forests is respectively 1776 and 545 g·m-2·an-1 in the FG and the MSDS; this medium is not significant (p = 0.10). Carbon stocks of fine woody debris are respectively 965 and 83 g·m-2 in the GF and HF, difference is significant (p = 0.0013). The interannual mean flow of carbon in fine woody debris in the GF and the HF were respectively 310 g·m-2·an-1 and 51 g·m-2·an-1.

Share and Cite:

Ifo, A. , Koubouana, F. , Jourdain, C. and Nganga, D. (2015) Stock and Flow of Carbon in Plant Woody Debris in Two Different Types of Natural Forests in Bateke Plateau, Central Africa. Open Journal of Forestry, 5, 38-47. doi: 10.4236/ojf.2015.51005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Baker, T. R., Coronado, E. N. H., Phillips, O. L., Martin, J., Van der Heijden, G. M. F., Garcia, M., & Espejo, J. S. (2007). Low Stocks of Coarse Woody Debris in a Southwest Amazonian Forest. Oecologia, 152, 495-504.
[2] Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killen, T. J., Laurance, S. G., Laurance, L. W., Lewis, S., Lloyd, J., Monteagudo, A., Neill, D. A., Patiño, S., Pitman, N. C. A., Silva, N. M., & Vásquez, R. (2004a). Variation in Wood Density Determines Spatial Patterns in Amazonian Forest Biomass. Global Change Biology, 10, 545-562.
[3] Beets, P. N., Hood, I. A., Kimberley, M. O., Olivier, G. R., Pearce, S. H., & Garder, J. F. (2008). Coarse Woody Debris Decay Rates for Seven Indigenous Tree Species in the Central North Island of New Zealand. Forest Ecology and Management, 256, 548-557.
[4] Bernhard-Reversat, F. (1993). Dynamics of Litter and Organic Matter at the Soil Litter Interface in Fast-Growing Tree Plantations on Sandy Ferrallitic Soils (Congo). Acta Ecology, 14, 179-195.
[5] Chambers, J. Q. (1998). The Role of Coarse Wood in the Carbon Cycle of Central Amazon Rain Forest. Ph.D. Dissertation, Santa Barbara: University of California.
[6] Chambers, J., Schimel, J. P., & Nobre, A. D. (2001). Respiration from Coarse Woody Litter in Central Amazon Forests. Biogeochemistry, 52, 115-131.
[7] Chee, Y. E. (1999). A Comparison of Carbon Budgets for a Pinusradiata Plantation and a Native Eucalypt Forest in Bago State Forest, New South Wales (B.Sc. Honours Thesis). Canberra: Department of Geography, Australian National University.
[8] Clark, D. B., Clarck, D. A., Brown, S., Oberbaver, S. F., & Veldkamp, E. (2002). Stocks and Flowflow of Coarse Woody Debris across a Tropical Rain Forest Nutrient and Topography Gradient. Forest Ecology and Management, 164, 237-248.
[9] Clark, D. F., Kneeshaw, D. D., & Antos, J. A. (1998). Coarse Woody Debris in Subboreal Spruce Forests of West-Central British Columbia. Canadian Journal of Forest Research, 28, 284-290.
[10] Delegue, M. A., Fuhr, M., Schwartz, D., Mariotti, A., & Nasi, R. (2001). Recent Origin of a Large Part of the Forest Cover in the Gabon Coastal Area Based on Stable Carbon Isotope Data. Oecologia, 129, 106-113.
[11] Eaton, J. M., & Lawrence, D. (2006). Woody Debris Stocks and Flowes during Succession in a Dry Tropica Forest. Forest Ecology and Management, 232, 46-55.
[12] Eaton, M. J. (2005). Woody Debris and the Carbon Budget of Hill-Slope Forest Clump s in the Southern Yucatán Peninsular Region. Charlottesville: University of Virginia, 84 p.
[13] Ekouloungou, R., Liu, X., Loumeto, J., Ifo, S., Bocko, Y., Koula, F., & Niu, S. (2014). Tree Allometry in Tropical Forest of Congo for Carbon Stocks Estimation in Above-Ground Biomass. Open Journal of Forestry, 4, 481-491.
[14] Favier, C., Chave, J., Fabing, A., Schwartz, D., & Dubois, M. A. (2004). Modelling Forest-Savanna Mosaic Dynamics in Man-Influenced Environments: Effects of Fire, Climate and Soil Heterogeneity. Ecological Modelling, 171, 85-102.
[15] Fraver, S., Wagner, R. G., & Day, M. (2002). Dynamics of Coarse Woody Debris Following Gap Harvesting in the Acadian Forest of Central Maine, USA. Canadian Journal of Forest Research, 32, 2094-2105.
[16] Gale, N. (2000). The Aftermath of Tree Death: Coarse Woody Debris and the Topography in Four Tropical Rain Forests. Canadian Journal of Forest Research, 30, 1489-1493.
[17] Goma-Tchimbakala, J., & Berhard-Reversat, F. (2006). Comparison of Litter Dynamics in Three Plantations of an Indigenous Timber Species (Terminalia superb) and a Natural Tropical Forest in Mayombe, Congo. Forest Ecology and Management, 229, 304-313.
[18] Gough, C. M., Vogel, C. S., Kazanski, C., Nagel, L. N., Flower, C. E, & Curtis, P. S. (2007). Coarse Woody Debris and the Carbon Balance of a North Temperate Forest. Forest Ecology and Management, 244, 60-67.
[19] Gove, J. H., Ducey, M. J., & Valentine, H. T. (2002). Multistage Point Relascope and Randomized Branch Sampling for Downed Coarse Woody Debris Estimation. Forest Ecology and Management, 155, 153-162.
[20] Grove, S. J. (2001). Extent and Composition of Dead Wood in Australia Lowland Tropical Rainforest with Different Management History. Forest Ecology and Management, 154, 35-53.
[21] Harmon, M. E., & Sexton, J. (1996). Guidelines for Measurements of Woody Detritus in Forest Ecosystems. US LTER Publication No. 20, Seattle, WA: University of Washington, 73 p.
[22] Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack Jr., K., & Cummins, K. W. (1986). Ecology of Coarse Woody Debris in Temperate Ecosystems. Advances in Ecological Research, 15, 133-302.
[23] Jessen, R. J. (1955). Determining the Fruit Count on a Tree by Randomized Branch Sampling. Biometrics, 11, 99-109.
[24] Jiménez, E. M., Moreno, F. H., Lloyd, J., Penuela, M. C., & Patino, S. (2009). Fine Root Dynamics for Forests on Contrasting Soils in the Colombian Amazon. Biogeosciences Discussions, 6, 3415-3453.
[25] Jomura, M., Kominami, Y., Tamai, K., Miyama, T., Goto, Y., Dannoura, M., & Kanazawa, Y. (2007). The Carbon Budget of Coarse Woody Debris in a Temperate Broad-Leaved Secondary Forest in Japan. Tellus B, 59, 211-222.
[26] Jourdan, C., Silva, E. V., Goncalves, J. L. M., Ranger, J., Moreira, R. M., & Laclau, J. P. (2008). Fine Root Production and Turnover in Brazilian Eucalyptus Plantations under Contrasting Nitrogen Fertilization Regimes. Forest Ecology and Management, 256, 396-404.
[27] Karjalainen, L., & Kuuluvainen, T. (2002). Amount and Diversity of Coarse Woody Debris within a Boreal Forest Landscape Dominated by Pinussylvestris in Vienansalo Wilderness, Eastern Fennoscandia. Silva Fennica, 36, 147-167.
[28] Kraigher, H., Jurc, D., Kalan, P., Kunar, L., Levanic, T., Rupel, M., & Smolej, I. (2002). Beech Coarse Woody Debris Characteristics in Two Virgin Forest Reserves in Southern Slovenia. Zbomikgozdarstva in Lesarstva, 69, 91-134.
[29] Krauss, K. W., Doyle, T. W., Twilley, R. R., Smith, J. T., Whelan, K. R. T., & Sullivan, J. (2005). Woody Debris in the Mangrove Forests of South Florida. Biotropica, 37, 9-15.
[30] Lambert, R. L., Lang, G. E., & Reiners, W. A. (1980). Loss of Mass and Chemical Change in Decaying Boles of a Subalpine Balsam Fir Forest. Ecology, 61, 1460-1473.
[31] Linder, P., Elfving, B., & Zackrisson, O. (1997). Stand Structure and Successional Trends in Virgin Boreal Forest Reserves in Sweden. Forest Ecology and Management, 98, 17-33.
[32] Loumeto, J. J. (2002). Les systèmes litières des forêts à peuplement d’Okoumé. (Aucoumea Klaineana): Exemple de 2 sites congolais, La forêt du Chaillu et la forêt du littoral. Thèse, Paris: Université Paris VI, 159 p.
[33] Maser, C., Trappe, J. M., Cline, S. P. et al., Technical Editors (1984). The Seen and Unseen World of the Fallen Tree. Gen. Tech. Rep. PNW-GTR-164, Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 56 p.
[34] McKenzie, N., Ryan, P., Fogarty, P., & Wood, J. (2000). Sampling, Measurement and Analytical Protocols for Carbon Estimation in Soil, Litter and Coarse Woody Debris. National Carbon Accounting System Technical Report No. 14, Canberra: Australian Greenhouse Office.
[35] Mitchard, E. T. A., Saatchi, S. S., Gerard, F. F., Lewis, S. L., & Meir, P. (2009). Measuring Woody Encroachment along a Forest-Savanna Boundary in Central Africa. Earth Interact, 13, 1-29.
[36] Muller, R. N., & Yan, L. (1991). Coarse Woody Debris in an Old-Growth Deciduous Forest on the Cumberland Plateau, Southeastern Kentucky. Canadian Journal of Forest Research, 21, 1567-1572.
[37] Nganga, D. (2011). Litterfall, Accumulation and Decomposition in the Forest Groves Established on Savannah in the Plateau Teke, Central Africa. Journal of Environmental Science and Technology, 4, 601-610.
[38] Pandey, R. R., Sharma, G., Tripathi, S. K., & Singh, A. K. (2007). Litterfall, Litter Decomposition and Nutrient Dynamics in a Subtropical Natural Oak Forest and Managed Plantation in Northeastern India. Forest Ecology and Management, 240, 96-104.
[39] Pedlar, J. H., Pearce, J. L., Venier, L. A., & McKenney, D. W. (2002). Coarse Woody Debris in Relation to Disturbance and Forest Type in Boreal Canada. Forest Ecology and Management, 158, 189-194.
[40] Pesonen, A., Leino, O., Maltamo, M., & Kangas, A. (2009). Comparison of Field Sampling Methods for Assessing Coarse Woody Debris and Use of Airborne Laser Scanning as Auxiliary Information. Forest Ecology and Management, 257, 1532-1541.
[41] Pittman, R. J. (2005). Coarse Woody Debris in Industrially Managed Pinustaeda Plantation of Southeastern United States. Master’s Thesis, Blacksburg, VA: Virginia Polytechnics Institute and State University, 113 p.
[42] Rahman, M. M., Franck, G., Ruprecht, H., & Vacik, H. (2008). Structure of Coarse Woody Debris in Lange-Leitn Natural Forest Reserve, Austria. Journal of Forest Science, 54, 161-169.
[43] Rice, A. H., Hammond-Pyle, E., Saleska, S. R., Hutyra, L., Palace, M., Keller, M., de Camargo, P. B., Portilho, K., Marques, D. F., & Wofsy, S. C. (2004). Carbon Balance and Vegetation Dynamics in an Old-Growth Amazonian Forest. Ecological Applications, l14, 55-71.
[44] Samuelsson, J., Gustafsson, L., & Ingelög, T. (1994). Dying and Dead Trees—A Review of Their Importance for Biodiversity. Uppsala: Swedish Threatened Species Unit.
[45] Schartz, D., Elenga, H., Vincens, A., Bertaux, J., Mariotti, A., Achoundong, G., Alexandre, A., Belingard, C., Girardin, C., Guillet, B., Maley, J., De Namur, C., Reynaud-Farrera, I., & Youta Happi, J. (1996). Dans: M. Servant-Vildary (dir. Publ.). Dynamique à Long Terme des Ecosystèmes Forestiers Intertropicaux, 38, 325-338.
[46] Schwartz, D., & Namri, M. (2002). Mapping the Total Organic Carbon in the Soils of the Congo. Global Planetary Change, 33, 77-93.
[47] Siipola, A. L., Siitonen, J., & Kallio, R. (1998). Amount and Quality of Coarse Woody Debris in Natural and Managed Coniferous Forest near the Timberline in Finnish Lapland. Scandinavian Journal of Forest Research, 13, 204-214.
[48] Turner, D. P., Koerper, G. J., Harmon, M. E., & Lee, J. J. (1995). A Carbon Budget for Forests of the Conterminous United States. Ecological Applications, 5, 421-436.
[49] Vincens, A., Schwartz, D., Elenga, H., Reynaud-Farrera, I., Alexandre, A. et al. (1999). Forest Response to Climate Changes in Atlantic Equatorial Africa during the Last 4000 Years BP and Inheritance on the Modern Landscapes. Journal of Biogeography, 26, 879-885.
[50] Vogt, K. A. (1991). Carbon Budgets of Temperate Forest Ecosystems. Tree Physiology, 9, 69-86.
[51] Waren, W. G., & Olsen, P. F. (1964). A Line Intersect Technique for Assessing Logging Waste. Forest Science, 10, 267-276.
[52] Wendy, H. L., David, M. B., Lucy, R. H., Scott, R. S., Elizabeth, H. P., Daniel, C., & Steven, C. W. (2006). Woody Debris Contribution to the Carbon Budget of Electively Logged and Maturing Mid-Latitude Forests. Oecologia, 148, 108-117.
[53] Wilcke, W., Hess, T., Bengel, C., Homeier, J., Valarezo, C., & Zech, W. (2005). Coarse Woody Debris in a Montane Forest in Ecuador: Mass, C and Nutrient Stock, and Turnover. Forest Ecology and Management, 205, 139-147.
[54] Woldendorp, G., Keenan, R. J., & Ryan, M. F. (2002). An Analysis of Sampling Methods for Coarse Woody Debris in Australian Forest Ecosystems: A Report for the National Greenhouse Strategy, Module 6.6 (Criteria and Indicators of Sustainable Forest Management). Canberra: Bureau of Rural Sciences, 94 p.
[55] Woodall, C. W., & Liknes, G. C. (2008). Relationships between Forest Fine and Coarse Woody Debris Carbon Stocks across Latitudinal Gradients in the United States as an Indicator of Climate Change Effects. Ecological Indicators, 8, 686-690.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.