Effect of Tantalum Doping on TiO2 Nanotube Arrays for Water-Splitting

DOI: 10.4236/mrc.2015.41001   PDF   HTML   XML   4,572 Downloads   5,394 Views   Citations

Abstract

This work is intended to define a new possible methodology for TiO2 doping through the use of electrochemical deposition of tantalum directly on the titanium nanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution. This method does not seem to cause any influence on the nanotube structure, showing final products with news and interesting features with respect to the unmodified sample. Together with a decrease in the band gap and flat band potential of the TiO2 nanotubes, the tantalum doped specimen reports an increase of the photo conversion efficiency under UV light.

Share and Cite:

Pozio, A. (2015) Effect of Tantalum Doping on TiO2 Nanotube Arrays for Water-Splitting. Modern Research in Catalysis, 4, 1-12. doi: 10.4236/mrc.2015.41001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Gong, A., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C. (2001) Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. Journal of Materials Research, 16, 3331-3334.
http://dx.doi.org/10.1557/JMR.2001.0457
[2] Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A. (2003) Fabrication of Tapered, Conical-Shaped Titania Nanotubes. Journal of Materials Research, 18, 2588-2593.
http://dx.doi.org/10.1557/JMR.2003.0362
[3] Cai, Q., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005) The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation. Journal of Materials Research, 20, 230-236.
http://dx.doi.org/10.1557/JMR.2005.0020
[4] Kontos, A.G., Kontos, A.I., Tsoulkleris, D.S., Likodimos, V., Kunze, J., Schmuki, P. and Falaras, P. (2009) Photo-Induced Effects on Self-Organized TiO2 Nanotube Arrays: The Influence of Surface Morphology. Nanotechnology, 20, 045603 (1-9).
http://dx.doi.org/10.1088/0957-4484/20/4/045603
[5] Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005) Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Letters, 5, 191-195.
http://dx.doi.org/10.1021/nl048301k
[6] Grimes, C.A., Varghese, O.K. and Ranjan, S. (2008) The Solar Hydrogen Generation by Water Photoelectrolysis. Springer, New York.
[7] Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007) Highly-Ordered TiO2 Nanotube Arrays up to 220 μm in Length: Use in Water Photoelectrolysis and Dye-Sensitized Solar Cells. Nanotechnology, 18, 065707 (1-11).
http://dx.doi.org/10.1088/0957-4484/18/6/065707
[8] Mura, F., Masci, A., Pasquali, M. and Pozio, A. (2010) Stable TiO2 Nanotube Arrays with High UV Photoconversion Efficiency. Electrochimica Acta, 55, 2246-2251.
http://dx.doi.org/10.1016/j.electacta.2009.11.060
[9] Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A. (2003) Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure. Advanced Materials, 15, 624-627.
http://dx.doi.org/10.1002/adma.200304586
[10] Varghese, O.K., Gong, D., Paulose, M., Ong, K.G. and Grimes, C.A. (2003) Hydrogen Sensing Using Titania Nanotubes. Sens. Actuators B, 93, 338-344.
http://dx.doi.org/10.1016/S0925-4005(03)00222-3
[11] Chen, Q., Xu, D., Wu, Z. and Liu, Z. (2008) Free-Standing TiO2 Nanotube Arrays Made by Anodic Oxidation and Ultrasonic Splitting. Nanotechnology, 19, 365708, 5 p.
[12] Sennik, E., Colak, Z., Kilinc, N. and Ozturk, Z.Z. (2010) Synthesis of Highly-Ordered TiO2 Nanotubes for a Hydrogen Sensor. International Journal of Hydrogen Energy, 35, 4420-4427.
http://dx.doi.org/10.1016/j.ijhydene.2010.01.100
[13] Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007) High Efficiency Double Heterojunction Polymer Photovoltaic Cells Using Highly Ordered TiO2 Nanotube Arrays. Applied Physics Letters, 91, 152111(pp3). http://dx.doi.org/10.1063/1.2799257
[14] Mor, G.K., Basham, J., Paulose, M., Kim, S., Varghese, O.K., Vaish, A., Yoriya, S. and Grimes, C.A. (2010) High- Efficiency Förster Resonance Energy Transfer in Solid-State Dye Sensitized Solar Cells. Nano Letters, 10, 2387-2394.
http://dx.doi.org/10.1021/nl100415q
[15] Wang, Y., Yang, H., Liu, Y., Wang, H., Shen, H., Yan, J. and Xu, H.M. (2010) The Use of Ti Meshes with Self-Organized TiO2 Nanotubes as Photoanodes of All-Ti Dye-Sensitized Solar Cells. Progress in Photovoltaics: Research and Applications, 18, 285-290.
[16] Alivov, Y. and Fan, Z.Y. (2010) Dye-Sensitized Solar Cells Using TiO2 Nanoparticles Transformed from Nanotube Arrays. Journal of Materials Science, 45, 2902-2906. http://dx.doi.org/10.1007/s10853-010-4281-2
[17] Liu, Z. and Misra, M. (2010) Bifacial Dye-Sensitized Solar Cells Based on Vertically Oriented TiO2 Nanotube Arrays. Nanotechnology, 21, 125703, 4 p.
[18] Fang, D., Liu, S.Q., Chen, R.Y., Huang, K.L., Li, J.S., Yu, C. and Qin, D.Y. (2008) Fabrication and Characterization of Highly Ordered Porous Anodic Titania on Titanium Substrate. Journal of Inorganic Materials, 23, 647-651.
http://dx.doi.org/10.3724/SP.J.1077.2008.00647
[19] Oh, S.H., Finones, R.R., Daraio, C., Chen, L.H. and Jin, S. (2005) Growth of Nano-Scale Hydroxyapatite Using Chemically Treated Titanium Oxide Nanotubes. Biomaterials, 26, 4938-4943.
http://dx.doi.org/10.1016/j.biomaterials.2005.01.048
[20] Oh, S.H. and Jin, S. (2006) Titanium Oxide Nanotubes with Controlled Morphology for Enhanced Bone Growth. Materials Science and Engineering: C, 26, 1301-1306.
http://dx.doi.org/10.1016/j.msec.2005.08.014
[21] Oh, H.J., Lee, J.H., Kim, Y.J., Suh, S.J., Lee, J.H. and Chi, C.S. (2008) Surface Characteristics of Porous Anodic TiO2 Layer for Biomedical Applications. Materials Chemistry and Physics, 109, 10-14.
http://dx.doi.org/10.1016/j.matchemphys.2007.11.022
[22] Das, K., Bandyopadhyay, A. and Bose, S. (2008) Biocompatibility and in Situ Growth of TiO2 Nanotubes on Ti Using Different Electrolyte Chemistry. Journal of the American Ceramic Society, 91, 2808-2814.
http://dx.doi.org/10.1111/j.1551-2916.2008.02545.x
[23] Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007) Decreased Staphylococcus epidermis Adhesion and Increased Osteoblast Functionality on Antibiotic-Loaded Titania Nanotubes. Biomaterials, 28, 4880- 4888. http://dx.doi.org/10.1016/j.biomaterials.2007.07.037
[24] Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007) Titania Nanotubes: A Novel Platform for Drug-Eluting Coatings for Medical Implants? Small, 3/11, 1878-1881.
http://dx.doi.org/10.1002/smll.200700412
[25] Peng, L., Mendelsohn, A.D., LaTempa, T.J., Yoriya, S., Grimes, C.A. and Desai, T.A. (2009) Long-Term Small Molecule and Protein Elution from TiO2 Nanotubes. Nano Letters, 9, 1932-1936.
http://dx.doi.org/10.1021/nl9001052
[26] Wang, Y., Feng, C., Jin, Z., Zhang, J., Yang, J.J. and Zhang, S.L. (2006) A Novel N-Doped TiO2 with High Visible Light Photocatalytic Activity. Journal of Molecular Catalysis A: Chemical, 260, 1-3.
http://dx.doi.org/10.1016/j.molcata.2006.06.044
[27] Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L. and Schmuki, P. (2006) Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes. Nano Letters, 6, 1080-1082.
http://dx.doi.org/10.1021/nl0600979
[28] Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Kleber, S. and Schmuki, P. (2006) TiO2 Nanotube Layers: Dose Effects during Nitrogen Doping by Ion Implantation. Chemical Physics Letters, 419, 426-429.
http://dx.doi.org/10.1016/j.cplett.2005.11.102
[29] Shankar, K., Tep, K.C., Mor, G.K. and Grimes, C.A. (2006) An Electrochemical Strategy to Incorporate Nitrogen in Nanostructured TiO2 Thin Films: Modification of Bandgap and Photoelectrochemical Properties. Journal of Physics D, 39, 2361-2366. http://dx.doi.org/10.1088/0022-3727/39/11/008
[30] Li, Q. and Shang, J.K. (2009) Self-Organized Nitrogen and Fluorine Co-Doped Titanium Oxide Nanotube Arrays with Enhanced Visible Light Photocatalytic Performance. Environmental Science and Technology, 43, 8923-8929.
http://dx.doi.org/10.1021/es902214s
[31] Dong, L., Ma, Y., Wang, Y., Tian, Y., Ye, G., Jia, X. and Cao, G.X. (2009) Preparation and Characterization of Nitrogen-Doped Titania Nanotubes. Materials Letters, 63, 1598-1600. http://dx.doi.org/10.1016/j.matlet.2009.04.022
[32] Xu, J., Ao, Y.H., Chen, M. and Fu, D. (2010) Photoelectrochemical Property and Photocatalytic Activity of N-Doped TiO2 Nanotube Arrays. Applied Surface Science, 256, 4397-4401.
http://dx.doi.org/10.1016/j.apsusc.2010.02.037
[33] Park, J.H., Kim, S. and Bard, A.J. (2006) Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6, 24-28. http://dx.doi.org/10.1021/nl051807y
[34] Raja, K.S., Misra, M., Mahajan, V.K., Gandhi, T., Pillai, P. and Mohapatra, S.K. (2006) Photo-Electrochemical Hydrogen Generation Using Band-Gap Modified Nanotubular Titanium Oxide in Solar Light. Journal of Power Sources, 161, 1450-1457. http://dx.doi.org/10.1016/j.jpowsour.2006.06.044
[35] Wu, G., Nishikawa, T., Ohtani, B. and Chen, A. (2007) Synthesis and Characterization of Carbon-Doped TiO2 Nanostructures with Enhanced Visible Light Response. Chemistry of Materials, 19, 4530-4537.
http://dx.doi.org/10.1021/cm071244m
[36] Mohapatra, S.K., Misra, M., Mahajan, V.K. and Raja, K.S. (2007) Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode. The Journal of Physical Chemistry C, 111, 8677-8685. http://dx.doi.org/10.1021/jp071906v
[37] Hahn, R., Ghicov, A., Salonen, J., Lehto, V.P. and Schmuki, P. (2007) Carbon Doping of Self-Organized TiO2 Nanotube Layers by Thermal Acetylene Treatment. Nanotechnology, 18, 105604 (pp4).
http://dx.doi.org/10.1088/0957-4484/18/10/105604
[38] Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S. (2008) Characterization of Boron-Doped TiO2 Nanotube Arrays Prepared by Electrochemical Method and Its Visible Light Activity. Separation and Purification Technology, 62, 668-673. http://dx.doi.org/10.1016/j.seppur.2008.03.021
[39] Su, Y., Han, S., Zhang, X., Chen, X. and Lei, L. (2008) Preparation and Visible-Light-Driven Photoelectrocatalytic Properties of Boron-Doped TiO2 Nanotubes. Materials Chemistry and Physics, 110, 239-246.
http://dx.doi.org/10.1016/j.matchemphys.2008.01.036
[40] Yin, S., Yamaki, H., Komatsu, M., Zhang, Q., Wang, J., Tang, Q., Saito, F. and Sato, T. (2003) Preparation of Nitrogen-Doped Titania with High Visible Light Induced Photocatalytic Activity by Mechanochemical Reaction of Titania and Hexamethylenetetramine. Journal of Material Chemistry, 13, 2996-3001. http://dx.doi.org/10.1039/b309217h
[41] Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S. (2008) Characterization of Boron-Doped TiO2 Nanotube Arrays Prepared by Electrochemical Method and Its Visible Light Activity. Separation and Purification Technology, 62, 668-673.
[42] Vitiello, R.P., Macak, J.M., Ghicov, A., Tsuchiya, H., Dick, L.F.P. and Schmuki, P. (2006) N-Doping of Anodic TiO2 Nanotubes Using Heat Treatment in Ammonia. Electrochemistry Communications, 8, 544-548.
http://dx.doi.org/10.1016/j.elecom.2006.01.023
[43] Macak, M., Ghicov, A., Hahn, R., Tsuchiya, H. and Schmuki, P. (2006) Photoelectrochemical Properties of N-Doped Self-Organized Titania Nanotube Layers with Different Thicknesses. Journal of Materials Research, 21, 2824-2828.
http://dx.doi.org/10.1557/jmr.2006.0344
[44] Lei, L., Su, Y., Zhou, M., Zhang, X.W. and Chen, X.Q. (2007) Fabrication of Multi-Non-Metal-Doped TiO2 Nanotubes by Anodization in Mixed Acid Electrolyte. Materials Research Bulletin, 42, 2230-2236.
http://dx.doi.org/10.1016/j.materresbull.2007.01.001
[45] Tang, X.H. and Li, D.Y. (2008) Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response. Journal of Physical Chemistry C, 112, 5405-5409. http://dx.doi.org/10.1021/jp710468a
[46] Yang, X., Chen, J., Gong, L., Wu, M. and Yu, J.C. (2009) Cross-Medal Arrays of Ta-Doped Rutile Titania. Journal of the American Chemical Society, 131, 12048-12049. http://dx.doi.org/10.1021/ja904337x
[47] Meng, F. (2005) Influence of Sintering Temperature on Semi-Conductivity and Nonlinear Electrical Properties of TiO2-Based Varistor Ceramics. Materials Science and Engineering B, 117, 77-80.
http://dx.doi.org/10.1016/j.mseb.2004.10.021
[48] Feng, X., Shankar, K., Paulose, M. and Grimes, C.A. (2009) Tantalum-Doped Titanium Dioxide Nanowire Arrays for Dye-Sensitized Solar Cells with High Open-Circuit Voltage. Angewandte Chemie, 121, 8239-8242.
http://dx.doi.org/10.1002/ange.200903114
[49] Obata, K., Irie, H. and Hashimoto, K. (2007) Enhanced Photocatalytic Activities of Ta, N Co-Doped TiO2 Thin Films under Visible Light. Chemical Physics, 339, 124-132.
http://dx.doi.org/10.1016/j.chemphys.2007.07.044
[50] Mura, F., Pozio, A., Masci, A. and Pasquali, M. (2009) Effect of a Galvanostatic Treatment on the Preparation of Highly Ordered TiO2 Nanotubes. Electrochimica Acta, 54, 3794-3798.
http://dx.doi.org/10.1016/j.electacta.2009.01.073
[51] Dupuis, G. and Menu, M. (2006) Quantitative Characterisation of Pigment Mixtures Used in Art by Fibre-Optics Diffuse-Reflectance Spectroscopy. Applied Physics A, 83, 469-474.
http://dx.doi.org/10.1007/s00339-006-3522-3
[52] Simmons, E.L. (1975) Diffuse Reflectance Spectroscopy: A Comparison of the Theories. Applied Optics, 14, 1380- 1386. http://dx.doi.org/10.1364/AO.14.001380
[53] Yoldas, B.E. and Partlow, D.P. (1985) Formation of Broad Band Antireflective Coatings on Fused Silica for High Power Laser Applications. Thin Solid Films, 129, 1-14. http://dx.doi.org/10.1016/0040-6090(85)90089-6
[54] Mor, G.K., Varghese, O.K., Paulose, M. and Grimes, C.A. (2005) Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films. Advanced Functional Materials, 15, 1291-1296.
http://dx.doi.org/10.1002/adfm.200500096
[55] Burgeth, G. and Kisch, H. (2002) Photocatalytic and Photoelectrochemical Properties of Titania-Chloroplatinate (IV). Coordination Chemistry Reviews, 230, 41-47. http://dx.doi.org/10.1016/S0010-8545(02)00095-4
[56] Sakthivel, S. and Kisch, H. (2003) Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angewandte Chemie International Edition, 42, 4908-4911. http://dx.doi.org/10.1002/anie.200351577
[57] Lin, H., Huang, C.P., Li, W., Ni, C., Ismat Shah, S. and Tseng, Y. (2006) Size Dependency of Nanocrystalline TiO2 on Its Optical Property and Photocatalytic Reactivity Exemplified by 2-Chlorophenol. Applied Catalysis B: Environmental, 68, 1-11. http://dx.doi.org/10.1016/j.apcatb.2006.07.018
[58] Wei, W., Macak, J.M. and Schmuki, P. (2008) High Aspect Ratio Ordered Nanoporous Ta2O5 Films by Anodization of Ta. Electrochemistry Communications, 10, 428-432.
http://dx.doi.org/10.1016/j.elecom.2008.01.004
[59] Allam, N.K., Feng, X.J. and Grimes, C.A. (2008) Self-Assembled Fabrication of Vertically Oriented Ta2O5 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization. Chemistry of Materials, 20, 6477-6481.
http://dx.doi.org/10.1021/cm801472y
[60] Macak, J.M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S. and Schmuki, P. (2007) TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Current Opinion in Solid State and Materials Science, 11, 3-18. http://dx.doi.org/10.1016/j.cossms.2007.08.004
[61] Navale, S.C., Vadivel Murugan, A. and Ravi, V. (2007) Varistors Based on Ta-Doped TiO2. Ceramics International, 33, 301-303. http://dx.doi.org/10.1016/j.ceramint.2005.07.026
[62] Thamaphat, K., Limsuwan, P. and Ngotawornchai, B. (2008) Phase Characterization of TiO2 Powder by XRD and TEM. Kasetsart Journal: Natural Science, 42, 357-361. http://kasetsartjnatsci.kasetsart.org/
[63] Nashed, R., Szymanski, P., El-Sayed, M.A. and Allam, N.K. (2014) Self-Assembled Nanostructured Photoanodes with Staggered Bandgap for Efficient Solar Energy Conversion. American Chemical Society Nano, 8, 4915-4923.
[64] Oliva, F.Y., Avalle, L.B., Santos, E. and Cámara, O.R. (2002) Photoelectrochemical Characterization of Nanocrystalline TiO2 Films on Titanium Substrates. Journal of Photochemistry and Photobiology A: Chemistry, 146, 175-188.
http://dx.doi.org/10.1016/S1010-6030(01)00614-1
[65] Radecka, M., Rekas, M., Trenczek-Zajac, A. and Zakrzewska, K. (2008) Importance of the Band Gap Energy and Flat Band Potential for Application of Modified TiO2 Photoanodes in Water Photolysis. Journal of Power Sources, 181, 46-55. http://dx.doi.org/10.1016/j.jpowsour.2007.10.082
[66] van de Krol, R., Goossens, A. and Schoonman, J. (1997) Mott-Schottky Analysis of Nanometer-Scale Thin-Film Anatase TiO2. Journal of the Electrochemical Society, 144, 1723-1727.
http://dx.doi.org/10.1149/1.1837668
[67] Bolts, J.M. and Wrighton, M.S. (1976) Correlation of Photocurrent-Voltage Curves with Flat-Band Potential for Stable Photoelectrodes for the Photoelectrolysis of Water. The Journal of Physical Chemistry, 80, 2641-2645.
http://dx.doi.org/10.1021/j100565a004
[68] O’Hayre, R., Nanu, M., Schoonman, J. and Goossens, A. (2007) Mott-Schottky and Charge-Transport Analysis of Nanoporous Titanium Dioxide Films in Air. Journal of Physical Chemistry C, 111, 4809-4814.
http://dx.doi.org/10.1021/jp068354l
[69] Bondarenko, A.S. and Ragoisha, G.A. (2005) Variable Mott-Schottky Plots Acquisition by Potentiodynamic Electrochemical Impedance Spectroscopy. Journal of Solid State Electrochemistry, 9, 845-849.
http://dx.doi.org/10.1007/s10008-005-0025-7
[70] Scharnweber, D., Beutner, R., Rössler, S. and Worch, H. (2002) Electrochemical Behavior of Titanium-Based Materials—Are There Relations to Biocompatibility? Journal of Materials Science: Materials in Medicine, 13, 1215-1220.
http://dx.doi.org/10.1023/A:1021118811893
[71] Jakob, M., Levanon, H. and Kamat, P.V. (2003) Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Letters, 3, 353-358.
http://dx.doi.org/10.1021/nl0340071

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.