[1]
|
http://www.samsungsds.com.cn
|
[2]
|
http://www.gunneboentrance.com
|
[3]
|
http://www.signal.co.jp
|
[4]
|
http://www.omron.com
|
[5]
|
Qu, R., Bao, Y.-R. and Ren, C.-M. (2007) The Study of Event Recognition Technology of Ticket Gate in Urban Railway Traffic. Sensors and Actuators A: Physical, 134, 641-649. http://dx.doi.org/10.1016/j.sna.2006.06.053
|
[6]
|
Hinton, G.E. and Salakhutdinov, R.R. (2006) Reducing the Dimensionality of Data with Neural Net-
works. Science, 313, 504-507. http://dx.doi.org/10.1126/science.1127647
|
[7]
|
Vapnik, V. (1999) Support Vector Method for Function Estimation. US Patent 5,950,146. Google Patents.
|
[8]
|
Hornik, K., Stinchcombe, M. and White, H. (1989) Multilayer Feed forward Networks Are Universal Approximators. Neural Networks, 2, 359-366. http://dx.doi.org/10.1016/0893-6080(89)90020-8
|
[9]
|
Hinton, G.E., Osindero, S. and Teh, Y. (2006) A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18, 1527-1554. http://dx.doi.org/10.1162/neco.2006.18.7.1527
|
[10]
|
Hinton, G. (2012) A Practical Guide to Training Restricted Boltzmann Machines. Momentum, 9, 599-619.
|
[11]
|
Bengio, Y. (2009) Learning Deep Architectures for AI. Foundations and Trends® in Machine Learning.
|
[12]
|
Deselaers, T., Hasan, S., Bender, O. and Ney, H. (2009) A Deep Learning Approach to Machine Transliteration. Proceedings of the European Chapter of the Association for Computational Linguistics Workshop on Statistical Machine Translation, Athens, 30-31 March 2009, 233-241.
|
[13]
|
Hinton, G.E. (2002) Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation, 14, 1771-1800. http://dx.doi.org/10.1162/089976602760128018
|
[14]
|
Hinton, G. (2007) To Recognize Shapes, First Learn to Generate Images. In: Computational Neuroscience: Theoretical Insights into Brain Function, 535-547.
|
[15]
|
Horster, E. and Lienhart, R. (2008) Deep Networks for Image Retrieval on Large-Scale Databases. Proceedings of the 16th ACM International Conference on Multimedia, ACM, Vancouver British Columbia, 643-646.
|
[16]
|
Chen, E., Yang, X., Zha, H., Zhang, R. and Zhang, W. (2008) Learning Object Classes from Image Thumbnails through Deep Neural Networks. Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Las Vegas, 31 March-4 April 2008, 829-832.
|
[17]
|
Liu, Y., Zhou, S. and Chen, Q.C. (2011) Discriminative Deep Belief Networks for Visual Data Classification. Pattern Recognition, 44, 2287-2296. http://dx.doi.org/10.1016/j.patcog.2010.12.012
|
[18]
|
Fischer, A. and Igel, C. (2012) An Introduction to Restricted Boltzmann Machines. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Computer Science, 7441, 14-36.
http://dx.doi.org/10.1007/978-3-642-33275-3_2
|
[19]
|
Smolensky, P. (1986) Information Processing in Dynamical Systems: Foundations of Harmony Theory. In: Rumelhart, D.E. and McClelland, J.L., Eds., Parallel Distributed Processing, Vol. 1, MIT Press, Cambridge, 194-281.
|
[20]
|
Freund, Y. and Haussler, D. (1992) Unsupervised Learning of Distributions on Binary Vectors Using Two Layer Networks. Proceedings of Advances in Neural Information Processing Systems, 912-919.
|
[21]
|
Vapnik, V.N. (1995) The Nature of Statistical Learning Theory. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4757-2440-0
|
[22]
|
Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511801389
|
[23]
|
Pal, M. and Mather, P.M. (2004) Assessment of the Effectiveness of Support Vector Machines for Hyperspectral Data. Future Generation Computer Systems, 20, 1215-1225. http://dx.doi.org/10.1016/j.future.2003.11.011
|
[24]
|
Melgani, F. and Bruzzone, L. (2004) Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 1778-1790.
http://dx.doi.org/10.1109/TGRS.2004.831865
|
[25]
|
Foody, G.M. and Mathur, A. (2004) A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 1335-1343.
http://dx.doi.org/10.1109/TGRS.2004.827257
|
[26]
|
Camps-Valls, G. and Bruzzone, L. (2009) Kernel Methods for Remote Sensing Data Analysis. Wiley, Chichester.
http://dx.doi.org/10.1002/9780470748992
|