[1]
|
Cartwright, J.H.E., García-Ruiz, J.M., Novella, M.L. and Otálora, F. (2002) Formation of Chemical Gardens. Journal of Colloid and Interface Science, 256, 351-359. http://dx.doi.org/10.1006/jcis.2002.8620
|
[2]
|
Pratama, F.S., Robinson, H.F. and Pagano, J.J. (2011) Spatially Resolved Analysis of Calcium-Silica Tubes in Reverse Chemical Gardens. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 127-133. http://dx.doi.org/10.1016/j.colsurfa.2011.08.041
|
[3]
|
Bormashenko, E., Bormashenko, Y., Stanevsky, O. and Pogreb, R. (2006) Evolution of Chemical Gardens in Aqueous Solutions of Polymers. Chemical Physics Letters, 417, 341-344. http://dx.doi.org/10.1016/j.cplett.2005.10.049
|
[4]
|
Barge, L.M., Doloboff, I.J., White, L.M., Stucky, G.D., Russell, M.J. and Kanik, I. (2011) Characterization of Iron-Phosphate-Silicate Chemical Garden Structures. Langmuir, 28, 3714-3721. http://dx.doi.org/10.1021/la203727g
|
[5]
|
Aaskuma, Y., Murakami, Y. and Konishi, M. (2014) Anti-Solvent Effect of Crystallization by Feeding Ethanol under Microwave Radiation. Crystal Research and Technology, 49, 129-134. http://dx.doi.org/10.1002/crat.201300327
|
[6]
|
Asakuma, Y. and Miura, M. (2014) Effect of Microwave Radiation on Diffusion Behavior of Anti-Solvent during Crystallization. Journal of Crystal Growth, 402, 32-36. ttp://dx.doi.org/10.1016/j.jcrysgro.2014.04.031
|
[7]
|
Parmar, H., Kanazawa, Y., Asada, M., Asakuma, Y., Phan, C., Pareek, V. and Evans, G. (2014) Influence of Microwave on Water Surface Tension. Langmuir, 30, 9875-9879. http://dx.doi.org/10.1021/la5019218
|
[8]
|
Nakai, Y., Tsujita, Y. and Yoshimizu, H. (2002) Control of Gas Permeability for Cellulose Acetate Membrane by Microwave Irradiation. Desalination, 145, 375-377. http://dx.doi.org/10.1016/S0011-9164(02)00439-3
|
[9]
|
Nakai, Y., Yoshimizu, H. and Tsujita, Y. (2005) Enhanced Gas Permeability of Cellulose Acetate Membranes under Microwave Irradiation. Journal of Membrane Science, 256, 72-77.
|