Electrorotation: A Spectroscopic Imaging Approach to Study the Alterations of the Cytoplasmic Membrane

DOI: 10.4236/ami.2015.51001   PDF   HTML   XML   2,638 Downloads   3,373 Views   Citations


Electrorotation (ER) is a technique allowing the characterization of the surface properties of a variety of supra-molecular aggregates and living cultured cells as well as cellular organelles and biological materials in general. In particular, this technique allows measuring two important physical parameters of the cell membrane: specific capacitance and specific conductance. These parameters are strictly related to the structure/function relationships of the biological membrane; ER becomes thus a powerful means to investigate a number of phenomena involving the membrane integrity. These phenomena may originate from treatments with exogenous molecules and/or from pathological effects. Concerning these aspects, the study of the transfer of exogenous material (i.e. cat-anionic vesicles or liposomes) across the cell membrane assumes a high importance. This review is focused on the physical functioning principles of ER and on the quantitative analysis of the experimental measurements. This work also reports on different fields of application of ER with particular reference to data obtained in our laboratory. The investigation of the alterations of the cytoplasmic membrane function, as evidenced by this strategy, will be illustrated in detail.

Share and Cite:

Bonincontro, A. and Risuleo, G. (2015) Electrorotation: A Spectroscopic Imaging Approach to Study the Alterations of the Cytoplasmic Membrane. Advances in Molecular Imaging, 5, 1-15. doi: 10.4236/ami.2015.51001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Alberts, B., et al. (2012) Molecular Biology of the Cell Garland. 5th Edition, New York.
[2] Mattetti, A. and Risuleo, G. (2014) Apoptosis: A Mode of Cell Death. Biochemistry & Molecular Biology, 2, 34-39.
[3] Cosimati, R., Milardi, G.L., Bombelli, C., Bonincontro, A., Bordi, F., Mancini, G. and Risuleo, G. (2013) Interactions of DMPC and DMPC/Gemini Liposomes with the Cell Membrane Investigated by Electrorotation. BBA Biomembranes, 1828, 352-356.
[4] Hope, M.J., Nayar, R., Mayer, L.D. and Cullis, P.R. (1992) Reduction of Liposomes Size and Preparation of Unilamellar Vesicles by Extrusion Techniques. In: Gregoriadis, G., Ed., Liposome Technology, 2nd Edition, CRC Press, Boca Raton, Vol. I, 123-139.
[5] MacDonald, R.C. and MacDonald, R.I. (1992) Application of Freezing and Thawing in Liposomes Technology. In: Gregoriadis, G., Ed., Liposome Technology, 2nd Edition, Vol. I, CRC Press, Boca Raton, 140-155.
[6] Foster, K.R., Sauer, F.A. and Schwan, H.P. (1992) Electrorotation and Levitation of Cells and Colloidal Particles. Biophysical Journal, 63, 180-190.
[7] Gimsa, J. (2001) A Comprehensive Approach to Electro-Orientation, Electrodeformation, Dielectrophoresis, and Electrorotation of Ellipsoidal Particles and Biological Cells. Bioelectrochemistry, 54, 23-31.
[8] Gimsa, J., Pritzen, C. and Donath, E. (1989) Characterisation of Virus-Red Cell Interaction by Electrorotation. Studia Biophysica, 130, 123-131.
[9] Gimsa, J., Marszalek, P., Loewe, U. and Tsong, T.Y. (1991) Dielectrophoresis and Electrorotation of Neurospora Slime and Murine Myeloma Cells. Biophysical Journal, 60, 749-760.
[10] Wang, X.-B., Huang, Y., Gascoyne, P.R.C., Becker, F.F., Hoelzel, R. and Pethig, R. (1994) Changes in Friend Murine Erythroleukaemia Cell Membranes during Induced Differentiation Determinated by Electrorotation. Biochimica Biophysica Acta, 1193, 330-344.
[11] Dalton, C., Goater, A.D., Burt, J.P.H. and Smith, H.V. (2004) Analysis of Parasites by Electrorotation. Journal of Applied Microbiology, 96, 24-32.
[12] Bonincontro, A., Di Ilio, V., Pedata, O. and Risuleo, G. (2007) Dielectric Properties of the Plasma Membrane of Cultured Murine Fibroblasts Treated with a Nonterpenoid Extract of Azadirachta indica Seeds. Journal Membrane Biology, 215, 75-79.
[13] Berardi, V., Aiello, C., Bonincontro, A. and Risuleo, G. (2009) Alterations of the Plasma Membrane Caused by Murine Polyomavirus Proliferation: An Electrorotation Study. Journal Membrane Biology, 229, 19-25.
[14] Georgieva, R., Neu, B., Shilov, V.M., Knippel, E., Budde, A., Latza, R., Donath, E., Kiesewetter, H. and Baumler, H. (1998) Low Frequency Electrorotation of Fixed Red Blood Cells. Biophysical Journal, 74, 2114-2120.
[15] Huang, Y., Wangi, X.-B., Holzel, R., Beckert, F.F. and Gascoyne, P.R.C. (1995) Electrorotational Studies of the Cytoplasmic Dielectric Properties of Friend Murine Erythroleukaemia Cells. Physical Medical Biology, 40, 1789-1806.
[16] Hodgson, C.E. and Pethig, R. (1998) Determination of the Viability of Escherichia coli at the Single Organism Level by Electrorotation. Clinical Chemistry, 44, 2049-2051.
[17] Gimsa, J. (1999) New Light Scattering and Field Trapping Methods Access the Internal Electric Structure of Submicron Particles, like Influenza Viruses. Annals of the New York Academy of Sciences, 873, 287-298.
[18] Dalton, C., Goater, A.D., Drysdale, J. and Pethig, R. (2001) Parasite Viability by Electrorotation. Colloids and Surfaces A—Physiochemical and Engineering Aspects, 195, 263-268.
[19] Gimsa, J., Pritzen, C. and Donath, E. (1989) Characterisation of Virus-Red Cell Interaction by Electrorotation. Studia Biophysica, 130, 123-131.
[20] Zhou, X.F., Markx, G.H. and Pethig, R. (1996) Effect of Biocide Concentration on Electrorotation Spectra of Yeast Cell. Biochimica Biophysica Acta, 1281, 60-64.
[21] Arnold, W.M. and Zimmermann, U. (1982) Rotating-Field-Induced Rotation and Measurement of the Membrane Capacitance of Single Mesophyll Cells of Avena sativa. Zeitschrift Naturforschung C, 37, 908-915.
[22] Gagnon, Z.R. (2011) Cellular Dielectrophoresis: Applications to the Characterization, Manipulation, Separation and Patterning of Cells. Electrophoresis, 32, 2466-2487.
[23] Pethig, R. (2013) Dielectrophoresis: An Assessment of Its Potential to Aid the Research and Practice of Drug Discovery and Delivery. Advances in Drug Delivery Reviews, 65, 1589-1599.
[24] Ziervogel, H., Glaser, R., Schadow, D. and Heymann, S. (1986) Electrorotation of Lymphocytes, the Influence of Membrane Events and Nucleus. Bioscience Reports, 6, 973-982.
[25] Gascoyne, P.R.C., Wang, X.-B., Huang, Y. and Becker, F.F. (1997) Dielectrophoretic Separation of Cancer Cells from Blood. IEEE Transactions on Industrial Applications, 33, 670-678.
[26] Cristofanilli, M., De Gasperis, G., Zhang, L.S., Hung, M.C., Gascoyne, P.R.C. and Hortobagyi, G.N. (2002) Automated Electrorotation to Reveal Dielectric Variations Related to HER-2/neu Overexpression in MCF-7 Sublines. Clinical Cancer Research, 8, 615-619.
[27] Reuss, O.R., Kurschner, M., Dilsky, S., Horbaschek, M., Schenk, W.A., Zimmermann, U. and Sukhorukov, V.L. (2002) Interaction of Fluorinated Lipophilic Ions with the Plasma Membrane of Mammalian Cells Studied by Electrorotation and Dielectrophoresis. Journal of Electrostatics, 56, 419-434.
[28] Zimmermann, D., Kiesel, M., Terpitz, U., Zhou, A., Reuss, R., Kraus, J., Schenk, W.A., Bamberg, E. and Sukhorukov, V.L. (2008) A Combined Patch-Clamp and Electrorotation Study of the Voltage- and Frequency-Dependent Membrane Capacitance Caused by Structurally Dissimilar Lipophilic Anions. Journal of Membrane Biology, 221, 107-121.
[29] Sukhorukov, V.L., Imes, D., Woellhaf, M.W., Andronic, J., Kiesel, M., Shirakashi, R., Zimmermann, U. and Zimmermann, H. (2009) Pore Size of Swelling-Activated Channels for Organic Osmolytes in Jurkat Lymphocytes, Probed by Differential Polymer Exclusion. Biochimica Biophysica Acta, 1788, 1841-1850.
[30] Memmel, S., Sukhorukov, V.L., Horing, M., Westerling, K., Fiedler, V., Katzer, A., Krohne, G., Flentje, M. and Djuzenova, C.S. (2014) Cell Surface Area and Membrane Folding in Glioblastoma Cell Lines Differing in PTEN and p53 Status. PLoS ONE, 31, e87052.
[31] Milardi, G.L., Stringaro, A.R., Colone, M., Bonincontro, A. and Risuleo, G. (2014) The Cell Membrane Is the Main Target of Resveratrol as Shown by Interdisciplinary Biomolecular/Cellular and Biophysical Approaches. Journal of Membrane Biology, 247, 1-8.
[32] Stefanutti, E., Papacci, F., Sennato, S., Viola, I., Bombelli, C., Bordi, F., Mancini, G., Gigli, G., Bonincontro, A. and Risuleo, G. (2014) Cationic Liposomes DMPC/Gemini Traverse the Cell Membrane and Are Localized within the Cytoplasm without Causing a Significant Bio-Damage. Biochimica Biophysica Acta, 1838, 2646-2655.
[33] Berry, R.M. and Berg, H.C. (1996) Torque Generated by the Bacterial Flagellar Motor Close to Stall. Biophysical Journal, 71, 3501-3510.
[34] Dalton, C., Goater, A.D. and Smith, H.V. (2006) Fertilization State of Ascaris suum Determined by Electrorotation. Journal of Helminthology, 80, 25-31.
[35] Gascoyne, P., Pethig, R., Satayavivid, J., Becker, F.F. and Ruchirawat, M. (1997) Dielectrophoretic Detection of Changes in Erythrocyte Membranes Following Malarial Infection. Biochimica et Biophysica Acta: Biomembranes, 1323, 240-252.
[36] Nascimento, E., Silva, T. and Oliva, A. (2007) Identification, Characterization and Manipulation of Babesia-Bovis-Infected Red Blood Cells Using Microfluidics Technology. Parassitologia, 49, 45-52.
[37] Shirakashi, R., Mischke, M., Fischer, P., Memmel, S., Krohne, G., Fuhr, G.R., Zimmermann, H. and Sukhorukov, V.L. (2012) Changes in the Dielectric Properties of Medaka Fish Embryos during Development, Studied by Electrorotation. Biochemical Biophysisical Research Communication, 428, 127-131.
[38] Goater, A.D., Burt, J.P.H. and Pethig, R. (1997) A Combined Electrorotation and Travelling Wave Device: Applied to the Concentration and Viability of Cryptosporidium. Journal of Physics D: Applied Physics, 33, L65-L70.
[39] Asami, K. and Yonezawa, T. (1996) Dielectric Behaviour of Wild-Type Yeast and Vacuole Deficient Mutant over a Frequency Range of 10 kHz to 10 GHz. Biophysical Journal, 71, 2192-2200.
[40] Reichle, C., Schnelle, T., Müller, T., Leya, T. and Fuhr, G. (2000) A New Microsystem for Automated Electrorotation Measurements Using Laser Tweezers. Biochimica et Biophysica Acta, 1459, 218-229.
[41] Freitag, R., Schügerl, K., Arnold, W.M. and Zimmermann, U. (1989) The Effect of Osmotic and Mechanical Stress and Enzymatic Digestion on the Electrorotation of Insect Cells (Spodoptera frugiperda). Journal of Biotechnology, 11, 325-336.
[42] Egger, M. and Donath, E. (1995) Electrorotation Measurements of Diamide-Induced Platelet Activation Changes. Biophysical Journal, 68, 364-372.
[43] Chan, K.L., Morgan, H., Morgan, E., Cameron, I.T. and Thomas, M.R. (2000) Measurements of the Dielectric Properties of Peripheral Blood Mononuclear Cells and Trophoblast Cells Using AC Electrokinetic Techniques. Biochimica et Biophysica Acta, 1500, 313-322.
[44] Schmutterer, H. (2002) The Neem Tree and Other Meliaceous Plants. Neem Foundation, Mumbai.
[45] Aiello, C., Berardi, V., Ricci, F. and Risuleo, G. (2011) Biological Properties of a Methanolic Extract of Neem Oil, a Natural Oil from the Seeds of the Neem Tree (Azadirachta indica var. A. Juss). In: Preedy, V.R., Watson, R.R. and Patel, V.B., Eds., Nuts & Seeds in Health and Disease Prevention, Elsevier, London, Burlington and San Diego, 813-821.
[46] Di Ilio, V., Pasquariello, N., van der Esch, S.A., Cristofaro, M., Scarsella, G. and Risuleo, G. (2006) Cytotoxic and Antiproliferative Effects Induced by a Non Terpenoid Polar Extract of A. indica Seeds on 3T6 Murine Fibroblasts in Culture. Molecular and Cellular Biochemistry, 287, 69-77.
[47] Gimsa, J., Schnelle, T., Zechel, G. and Glaser, R. (1994) Dielectric Spectroscopy of Human Erythrocytes: Investigations under the Influence of Nystatin. Biophysical Journal, 66, 1244-1253.
[48] Cen, E.G., Dalton, D., Li, Y., Adamia, S., Pilarski, L.M. and Kaler, K.V. (2004) A Combined Dielectrophoresis, Traveling Wave Dielectrophoresis and Electrorotation Microchip for the Manipulation and Characterization of Human Malignant Cells. Journal of Microbiological Methods, 58, 387-401.
[49] Bonincontro, A., Iacoangeli, A. and Risuleo, G. (1996) Electrical Conductivity Dispersion as a Probe of Membrane Function after Murine Polyomavirus Infection in Cells in Culture. Bioscience Report, 16, 41-48.
[50] Bonincontro, A., Iacoangeli, A., Melucci-Vigo, G. and Risuleo, G. (1997) Apoptosis Dependent Decrease of the Inter-Membrane Ion Traffic in Cultured Mouse Fibroblasts Shown by Conductivity Dispersion. Bioscience Reports, 17, 547-556.
[51] Cazzola, R., Russo-Volpe, S., Cervato, G. and Cestaro, B. (2003) Biochemical Assessments of Oxidative Stress, Erythrocyte Membrane Fluidity and Antioxidant Status in Professional Soccer Players and Sedentary Controls. European Journal of Clinical Investigations, 33, 924-930.
[52] Ricci, F., Berardi, V. and Risuleo, G. (2008) Differential Cytotoxicity of MEX: A Component of Neem Oil Whose Action Is Exerted at the Cell Membrane Level. Molecules, 14, 122-132.
[53] Tooze, J., Ed. (1982) Molecular Biology of Tumor Viruses: DNA Tumor Viruses. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
[54] Iacoangeli, A., Melucci-Vigo, G. and Risuleo, G. (2000) Mechanism of the Inhibition of Murine Polyomavirus DNA Replication Induced by the Ionophore Monensin. Biochimie, 82, 35-39.
[55] Campanella, L., Delfini, M., Ercole, P., Iacoangeli, A. and Risuleo, G. (2002) Molecular Characterization and Action of Usnic Acid: A Drug That Inhibits Proliferation of Mouse Polyomavirus in Vitro and Its Main Target Is RNA Transcription. Biochimie, 84, 329-334.
[56] Norkin, L.C. (1977) Cell Killing by Simian Virus 40: Impairment of Membrane Formation and Function. Journal of Virology, 21, 872-879.
[57] Drachenberg, C.B., Papadimitriou, J.C., Wali, R., Cubitt, C.L. and Ramos, E. (2003) BK Polyoma Virus Allograft Nephropathy: Ultrastructural Features from Viral Cell Entry to Lysis. American Journal of Transplantation, 3, 1383-1392.
[58] Damm, E.M. and Pelkmans, L. (2006) Systems Biology of Virus Entry in Mammalian Cells. Cell Microbiology, 8, 1219-1227.
[59] Hosoda, R., Kuno, A., Hori, Y.S., Ohtani, K., Wakamiya, N., Oohiro, A., Hamada, H. and Horio, Y. (2013) Differential Cell-Protective Function of Two Resveratrol(Trans-3,5,4’-trihydroxystilbene) Glucosides against Oxidative Stress. Journal of Pharmacological and Experimental Therapy, 344, 124-132.
[60] Biswas, S., Hwang, J.W., Kirkham, P.A. and Rahman, I. (2012) Pharmacologial and Dietary Antioxidant Therapies for Chronic Obstructive Pulmonary Disease. Current Medical Chemistry, 20, 1496-1530.
[61] Li, X.Z., Wei, X., Zhang, C.J., Jin, X.L., Tang, J.J., Fan, G.J. and Zhou, B. (2012) Hypohalous Acid-Mediated Halogenation of Resveratrol and Its Role in Antioxidant and Antimicrobial Activities. Food Chemistry, 135, 1239-1244.
[62] Ding, D.J., Cao, X.Y., Dai, F., Li, X.Z., Liu, G.Y., Lin, D., Fu, X., Jin, X.L. and Zhou, B. (2012) Synthesis and Antioxidant Activity of Hydroxylated Phenanthrenes as Cis-Restricted Resveratrol Analogues. Food Chemistry, 135, 1011-1009.
[63] Olas, B., Zbikowska, H.M., Wachowicz, B., Krajewski, T., Buczynski, A. and Magnuszewska, A. (1999) Inhibitory Effect of Resveratrol on Free Radical Generation in Blood Platelets. Acta Biochimica Polonica, 46, 961-966.
[64] Faith, S.A., Sweet, T.J., Bailey, E., Booth, T. and Docherty, J.J. (2006) Resveratrol Suppresses Nuclear Factor-κB in Herpes Simplex Virus Infected Cells. Antiviral Research, 72, 242-251.
[65] Palamara, A.T., Nencioni, L., Aquilano, K., De Chiara, G., Hernandez, L., Cozzolino, F., Ciriolo, M.R. and Garaci, E. (2005) Inhibition of Influenza A Virus Replication by Resveratrol. Journal of Infectious Diseases, 191, 1719-1729.
[66] Docherty, J.J., Sweet, T.J., Bailey, E., Faith, S.A. and Booth, T. (2006) Resveratrol Inhibition of Varicella-Zoster Virus Replication in Vitro. Antiviral Research, 72, 171-177.
[67] Clouser, C.L., Chauhan, J., Bess, M.A., Oploo, J.L., Zhou, D., Dimick-Gray, S., Mansky, L.M. and Patterson, S.E. (2012) Anti-HIV-1 Activity of Resveratrol Derivatives and Synergistic Inhibition of HIV-1 by the Combination of Resveratrol and Decitabine. Bioorganic Medical Chemistry Letters, 22, 6642-6646.
[68] De Leo, A., Arena, G., Lacanna, E., Oliviero, G., Colavita, F. and Mattia, E. (2012) Resveratrol Inhibits Epstein Barr Virus Lytic Cycle in Burkitt’s Lymphoma Cells by Affecting Multiple Molecular Targets. Antiviral Research, 15, 196-202.
[69] Campagna, M. and Rivas, C. (2010) Antiviral Activity of Resveratrol. Biochemical Society Transactions, 38, 50-53.
[70] Saiko, P., Pemberger, M., Horvath, Z., Savinc, I., Grusch, M., Handler, N., Erker, T., Jaeger, W., Fritzer-Szekeres, M. and Szekeres, T. (2008) Novel Resveratrol Analogs Induce Apoptosis and Cause Cell Cycle Arrest in HT29 Human Colon Cancer Cells: Inhibition of Ribonucleotide Reductase Activity. Oncology Reports, 19, 1621-1626.
[71] Juan, M.E., Wenzel, U., Daniel, H. and Planas, J.M. (2008) Resveratrol Induces Apoptosis through ROS-Dependent Mitochondria Pathway in HT-29 Human Colorectal Carcinoma Cells. Journal of Agricultural and Food Chemistry, 56, 4813-4818.
[72] Singh, M. and Singh, N. (2009) Molecular Mechanism of Curcumin Induced Cytotoxicity in Human Cervical Carcinoma Cells. Molecular and Cellular Biochemistry, 325, 107-119.
[73] Xu, Q. and Si, L.Y. (2012) Resveratrol Role in Cardiovascular and Metabolic Health and Potential Mechanisms of Action. Nutrition Research, 32, 648-658.
[74] Samad, A., Sultana, Y. and Aqil, M. (2007) Liposomal Drug Delivery Systems: An Update Review. Current Drug Delivery, 4, 297-305.
[75] Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M. and Danielsen, M. (1987) Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure. Proceedings of the National Academy of Sciences of the United States of America, 84, 7413-7417.
[76] Dass, C.R. and Choong, P.F.M. (2006) Targeting of Small Molecule Anticancer Drugs to the Tumour and Its Vasculature Using Cationic Liposomes: Lesson from Gene Therapy. Cancer Cell International, 6, 17.
[77] Dass, C.R. (2003) Improving Anti-Angiogenic Therapy via Selective Delivery of Cationic Liposomes to Tumour Vasculature. International Journal of Pharmacology, 267, 1-12.
[78] Lasic, D.D. (1996) Liposomes in Drug Delivery. In: Rosoff, M., Ed., Vesicles, Marcel Dekker, New York, 447-476.
[79] Allen, T.M., Austin, G.A., Chonn, A., Lin, L. and Lee, K.C. (1991) Uptake of Liposomes by Cultured Mouse Bone Marrow Macrophages: Influence of Liposome Composition and Size. Biochimica Biophysica Acta—Biomembranes, 1061, 56-64.
[80] Heath, T.D., Lopez, N.G. and Papahadjopoulos, D. (1985) The Effects of Liposome Size and Surface Charge on Liposome-Mediated Delivery of Methotrexate-Gamma-Aspartate to Cells in Vitro. Biochimica Biophysica Acta, 820, 74-84.
[81] Bareford, L.M. and Swaan, P.W. (2007) Endocytic Mechanisms for Targeted Drug Delivery. Advances in Drug Delivery Reviews, 59, 748-758.
[82] Pauly, H. and Schwan, H.P. (1959) The Impedance of a Suspension of Spherical Particles Surrounded by a Shell. Zeitschrift Naturforschung, 14b, 125-131.
[83] Asami, K., Takahashi, Y. and Takashima, S. (1989) Dielectric Properties of Mouse Lymphocytes and Erythrocytes. Biochimica et Biophysica Acta, 1010, 49-55.
[84] Marina-Garcia, N., Franchi, L., Kim, Y.G., Hu, Y., Smith, D.E., Boons, G.-J. and Nunez, G. (2009) Clathrin and Dynamin-Dependent Endocytic Pathway Regulates Muramyl Dipeptide Internalization and NOD2 Activation. Journal of Immunology, 182, 4321-4327.
[85] Long, G., Pan, X., Kormelink, R. and Vlak, J.M. (2006) Functional Entry of Baculovirus into Insect and Mammalian Cells Is Dependent on Clathrin-Mediated Endocytosis. Journal of Virology, 80, 8830-8833.
[86] Inoue, Y., Tanaka, N., Tanaka, Y., Inoue, S., Morita, K., Zhuang, M., Hattori, T. and Sugamura, K. (2007) Clathrin-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus into Target Cells Expressing ACE2 with the Cytoplasmic Tail Deleted. Journal of Virology, 281, 8720-8729.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.