[1]
|
Cox, D.R. (1972) Regression Models and Life-Tables. Journal of the Royal Statistical Society, Series B: Methodological, 34, 187-220.
|
[2]
|
Schoenfeld, D. (1982) Partial Residuals for the Proportional Hazards Regression Model. Biometrika, 69, 239-241.
http://dx.doi.org/10.1093/biomet/69.1.239
|
[3]
|
Kneib, T. and Fahrmeir, L. (2007) A Mixed Model Approach for Geoadditive Hazard Regression. Scandinavian Journal of Statistics, 34, 207-228. http://dx.doi.org/10.1111/j.1467-9469.2006.00524.x
|
[4]
|
Perperoglou, A., le Cessie, S. and van Houwelingen, H.C. (2006) Reduced-Rank Hazard Regression for Modelling Non-Proportional Hazards. Statistics in Medicine, 25, 2831-2845. http://dx.doi.org/10.1002/sim.2360
|
[5]
|
Scheike, T.H. and Martinussen, T. (2004) On Estimation and Tests of Time-Varying Effects in the Proportional Hazards Model. Scandinavian Journal of Statistics, 31, 51-62. http://dx.doi.org/10.1111/j.1467-9469.2004.00372.x
|
[6]
|
Berger, U., Sch?fer, J. and Ulm, K. (2003) Dynamic Cox Modelling Based on Fractional Polynomials: Time-Variations in Gastric Cancer Prognosis. Statistics in Medicine, 22, 1163-1180. http://dx.doi.org/10.1002/sim.1411
|
[7]
|
Sauerbrei, W., Royston, P. and Look, M. (2007) A New Proposal for Multivariable Modelling of Time-Varying Effects in Survival Data Based on Fractional Polynomial Time-Transformation. Biometrical Journal, 49, 453-473.
http://dx.doi.org/10.1002/bimj.200610328
|
[8]
|
Grambsch, P.M. and Therneau, T.M. (1994) Proportional Hazards Tests and Diagnostics Based on Weighted Residuals Biometrika, 81, 515-526. http://dx.doi.org/10.1093/biomet/81.3.515
|
[9]
|
Sauerbrei, W., Royston, P. and Binder, H. (2007) Selection of Important Variables and Determination of Functional Form for Continuous Predictors in Multivariable Model Building. Statistics in Medicine, 26, 5512-5528.
http://dx.doi.org/10.1002/sim.3148
|
[10]
|
Govindarajulu, U.S., Spiegelman, D., Thurston, S.W., Ganguli, B. and Eisen, E.A. (2007) Comparing Smoothing Techniques in Cox Models for Exposure-Response Relationships. Statistics in Medicine, 26, 3735-3752.
http://dx.doi.org/10.1002/sim.2848
|
[11]
|
Royston, P. and Altman, D.G. (1994) Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling. Applied Statistics, 43, 429-453. http://dx.doi.org/10.2307/2986270
|
[12]
|
Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman and Hall, New York.
http://dx.doi.org/10.1007/978-1-4899-4541-9
|
[13]
|
Buchholz, A. and Sauerbrei, W. (2011) Comparison of Procedures to Assess Non-Linear and Time-Varying Effects in Multivariable Models for Survival Data. Biometrical Journal, 53, 308-331. http://dx.doi.org/10.1002/bimj.201000159
|
[14]
|
Altman, D.G., Lausen, B., Sauerbrei, W. and Schumacher, M. (1994) Danger of Using “Optimal” Cutpoints in the Evaluation of Prognostic Factors. Journal of the National Cancer Institute, 86, 829-835.
http://dx.doi.org/10.1093/jnci/86.11.829
|
[15]
|
Foekens, J.A., Peters, H.A., Look, M.P., Portengen, H., Schmitt, M., Kramer, M.D., Brünner, N., J?nicke, F., Meijer-van Gelder, M.E., Henzen-Logmans, S.C., van Putten, W.L.J. and Klijn, J.G.M. (2000) The Urokinase System of Plasminogen Activation and Prognosis in 2780 Breast Cancer Patients. Cancer Research, 60, 636-643.
|
[16]
|
Buchholz, A. (2010) Assessment of Time-Varying Long-Term Effects of Therapies and Prognostic Factors. Ph.D. Thesis, Technische Universit?t Dortmund, Dortmund. http://hdl.handle.net/2003/27342
|
[17]
|
Winnett, A. and Sasieni, P. (2001) Miscellanea. A Note on Scaled Schoenfeld Residuals for the Proportional Hazards Model. Biometrika, 88, 565-571. http://dx.doi.org/10.1093/biomet/88.2.565
|
[18]
|
Royston, P. and Sauerbrei, W. (2007) Improving the Robustness of Fractional Polynomial Models by Preliminary Covariate Transformation: A Pragmatic Approach. Computational Statistics & Data Analysis, 51, 4240-4253.
http://dx.doi.org/10.1016/j.csda.2006.05.006
|
[19]
|
Binder, H., Sauerbrei, W. and Royston, P. (2011) Multivariable Model-Building with Continuous Covariates: 1. Performance Measures and Simulation Design. Technical Report 105, University of Freiburg, Freiburg.
|