Computational Thermo-Fluid Dynamic Simulation of a Radiant Off-Gases Cooling System for Copper Smelting in a Pierce Smith Converter

Abstract

In copper sulfide concentrates smelting, the off-gases from the Pierce Smith converter (PSC) furnace must be treated to prevent environmental impacts as they are highly corrosive and toxic. The purpose of this research project is to present a methodology for the simulation of a capture and cooling system of the smelting off-gases from a Pierce Smith copper converter, using computational fluid dynamics. Through this methodology, it is possible to obtain a simulation model of the smelting off-gases behavior with an average error of 9.88%. Basically, it demonstrates that the simulated tendencies of the metallurgical off-gases on the cooling hood and chamber can be reliable to predict the thermo-fluid dynamic behavior of the off-gases inside the studied off-gases handling system.

Share and Cite:

Aguilera-Carvajal, Y. , Pérez-Cortés, S. , Hurtado-Cruz, J. and Morales-Quezada, E. (2014) Computational Thermo-Fluid Dynamic Simulation of a Radiant Off-Gases Cooling System for Copper Smelting in a Pierce Smith Converter. International Journal of Modern Nonlinear Theory and Application, 3, 236-247. doi: 10.4236/ijmnta.2014.35026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Sanchez, M. and Imris, I. (2006) Pirorrefinación del cobre blister. In: Pirometalurgia del Cobre y comportamiento de sistemas fundidos, Universidad de Concepción, Concepción, 39.
[2] Sanchez, M. and Imris, I. (2006) La secuencia en la piroextracción del cobre. In: Pirometalurgia del cobre y comportamiento de sistemas fundidos, Universidad de Concepción, Concepción, 19-38.
[3] Comisión Chilena del Cobre (2004) Resumen descriptivo de las tecnologías y operaciones de las fundiciones primarias de concentrados de cobre de Chile. Comisión Chilena del Cobre Inventario Nacional de Fuentes de Emisión de Dioxinas y Furanos, Chile, 207-230.
[4] Arellano, A.E. (1998) Estudio de flujo de gases en campanas extractoras de convertidores de cobre. Universidad de Santiago de Chile, Chile.
[5] Patankar, V. (1980) Numerical Heat Transfer and Fluid Flow. In: Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 1-39.
[6] Safe, P., Matson, S. and Deakin, J. (2002) Effective Design of Converter Hoods. TMS Annual Meeting and Exhibition, Texas, 1-11.
[7] Bird, R., Stewart, W. and Lightfoot, E. (1992) Las ecaciones de variación para sistemas ísotérmicos. In: Fenómenos de Transporte, Jonh Weley & Sons Inc., Barcelona, 95-137.
[8] ANSYS Inc. (2010) Reacting Flow in a Mixing Tube. ANSYS CFX Tutorials, Canonsburg, 239-260.
[9] Rodríguez, C. (2008) Modelo de Operación para Manejo de Gases de la Fundición Caletones. Pontificia Universidad Catolica de Valparaiso, Valparaiso.
[10] Astarita, T. and Carlomagno, G.M. (2013) Infrared Thermography for Thermo-Fluid-Dynamics. In: Experimental Fluid Mechanics, Springer, London, 23-125.
[11] FLIR Systems AB (2011) Guía de termografía para mantenimiento predictivo. Madrid, 4-44.
[12] ANSYS Inc. (2009) Coordinate System. In: Modeling and Meshing Guide, ANSYS Inc., Canonsburg, 15-25.
[13] ANSYS Inc. (2011) Skewness Correction. In: ANSYS FLUENT Theory Guide, ANSYS Inc., Canonsburg, 668-670.
[14] Munos, L.A. (2013) Levantamiento geométrico y optimización de la instrumentación del tren de gases de la fundición caletones Codelco-Chile División El Teniente. Universidad de Santiago de Chile, Santiago.
[15] Environmental Protection Agency (2005) Determination of Sulfuric Acid and Sulfur Dioxide Emissions from Stationary Sources.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.