Study of Optical and Electrical Properties of Nickel Oxide (NiO) Thin Films Deposited by Using a Spray Pyrolysis Technique


Nickel oxide (NiO) thin film has been deposited on a glass substrate at a temperature of 390°C ± 10°C using a simple and inexpensive spray pyrolysis technique. Nickel nitrate salt solution (Ni(NO3)2·6H2O) was employed to prepare the films and the film thickness was in order of 200 ± 5 nm. The structural, optical and electrical properties of NiO films were investigated using X-ray diffraction (XRD), visible spectrum, DC conductivity and Seebeck effect measurements. The results show that X-ray diffraction techniques have shown that prepared film is polycrystalline structure type cubic phase. The measurements of optical properties (transmittance (T) and absorbance (A)) of NiO films show that higher transmittance is 37.4% within the wavelength range (300 - 900 nm). Also the results have shown that the higher absorbance is 77.7%. The results of electrical properties have shown that at room temperature electrical conductivity is 1.3 × 10-5·cm)-1, and also results have shown that all the films are of p-type due to the negative Seebeck coefficient.

Share and Cite:

Hassan, A. (2014) Study of Optical and Electrical Properties of Nickel Oxide (NiO) Thin Films Deposited by Using a Spray Pyrolysis Technique. Journal of Modern Physics, 5, 2184-2191. doi: 10.4236/jmp.2014.518212.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Fujii, E., Tomozawa, A., Torii, H. and Takayama, R. (1996) Japanese Journal of Applied Physics, 35, L328.
[2] Sato, H., Minami, T., Takata, S. and Yamada, T. (1993) Thin Solid Films, 236, 27.
[3] Sasi, B., Gopchandran, K.G., Manoj, P.K., Koshy, P., Prabhakara Rao, P. and Vaidyan, V.K. (2003) Vacuum, 68, 149.
[4] Roslik, A.K., Konev, V.N. and Maltsev, A.M. (1995) Oxidation of Metals, 43, 1.
[5] Ahn, K.S., Nah, Y.C. and Sung, Y.E. (2002) Applied Surface Science, 199, 259.
[6] Chen, X., Wu, N.J., Smith, L. and Ignatiev, A. (2004) Applied Physical Letters, 84, 2700.
[7] Fasaki, I., Giannoudakos, A., Stamataki, M., Kompitsas, M., Gyorgy, E., Mihailescu, I.N., Roubani-Kalantzopoulou, F., Lagoyannis, A. and Harissopulos, S. (2008) Applied Physics A, 91, 487.
[8] Sasi, B., Gopchandran, K., Manoj, P., Koshy, P., Rao, P. and Vaidyan, V.K. (2003) Vacuum, 68, 149-154.
[9] Desai, J.D., Min, S.K., Jung, K.D. and Joo, O.S. (2006) Applied Surface Science, 253, 1781-1786.
[10] Kang, J.-K. and Rhee, S.W. (2001) Thin Solid Films, 391, 57-61.
[11] Nakaoka, K., Ueyama, J. and Ogura, K. (2004) Journal of Electroanalytical Chemistry, 571, 93-99.
[12] Taylor, D.J., Fleig, P.F., Schwab, S.T. and Page, R.A. (1999) Surface and Coatings Technology, 120-121, 465-469.
[13] Garcia-Miquel, J.L., Zhang, Q., Allen, S.J., Rougier, A., Blyr, A., Davies, H.O., Jones, A.C., Leedham, T.J., William, P.A. and Impey, S.A. (2003) Thin Solid Films, 424, 165-170.
[14] Park, J.W., Park, J.W., Kim, D.Y. and Lee, J.K. (2005) Journal of Vacuum Science & Technology A, 23, 1309-1313.
[15] Chen, H.L., Lu, Y.M. and Hwang, W.S. (2005) Thin Solid Films, 514, 361-365.
[16] Pramanik, P. and Bhattacharya, S. (1990) Journal of the Electrochemical Society, 137, 3869-3870.
[17] Banerjee, S., Santhanam, A., Dhathathrenyan, A. and Rao, P.M. (2003) Langmuir, 19, 5522-5525.
[18] Mahmoud, S.A., Alshomer, S. and Tarawnh, M.A. (2011) Journal of Modern Physics, 2, 1178-1186.
[19] Xie, Y., Wang, W., Qian, Y., Yang, L. and Chen, Z. (1996) Journal of Crystal Growth, 167, 656-659.
[20] Misho, R.H., Murad, W.A., Fatahalah, G.H., Abdul-Aziz, I.M. and Al-Doori, H.M. (1988) Physica Status Solidi (a), 109, K101-K104.
[21] Patil, P.S. and Kadam, L.D. (2002) Applied Surface Science, 199, 211-221.
[22] Patil, V., Pawar, S., Chougule, M., Godse, P., Sakhare, R., Sen, S. and Joshi, P. (2011) Journal of Surface Engineered Materials and Advanced Technology, 1, 35-41.
[23] Chen, H.L., Lu, Y.M. and Hwang, W.S. (2005) Surface and Coatings Technology, 198, 138-142.
[24] Fasaki, I., Koutoulaki, A., Kompitsas, M. and Charitidis, C. (2010) Applied Surface Science, 257, 429-433.
[25] Eckortova, L. (1977) Physics of Thin Films. Plenum Press, New York.
[26] Pankove, J. (1969) Optical Processes in Semiconductors. Prentice-Hall, Inc., Upper Saddle River.
[27] Strectman, G.B. and Banerjee, S. (2000) Solid State Electronic Devices. 5th Edition, Prentice Hall, Englewood Cliffs.
[28] Varkey, A.J. and Fort, A.F. (1993) Thin Solid Films, 235, 47-50.
[29] Kadam, L.D., Bhosale, C.H. and Patil, P.S. (1997) Turkish Journal of Physics, 21, 1037.
[30] Adler, D., Tjeng, L.H., Voogt, F.C., Hibma, T., Sawatzky, G.A., Chen, C.T., Vogel, J., Sacchi, M. and Iacobucci, S. (1998) Physical Review B: Condensed Matter and Materials Physics, 57, 11623.
[31] Davazoglou, D., Leveque, G. and Donnadieu, A. (1988) Solar Energy Materials, 17, 379-390.
[32] Chopra, K.L. (1969) Thin Films Phenomena. McGraw-Hill, New York.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.