Dirichlet Brownian Motions

DOI: 10.4236/ojs.2014.411085   PDF   HTML   XML   2,371 Downloads   2,736 Views  


In this work we introduce a Brownian motion in random environment which is a Brownian constructions by an exchangeable sequence based on Dirichlet processes samples. We next compute a stochastic calculus and an estimation of the parameters is computed in order to classify a functional data.

Share and Cite:

Faires, H. (2014) Dirichlet Brownian Motions. Open Journal of Statistics, 4, 902-911. doi: 10.4236/ojs.2014.411085.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dahl, B.D. (2006) Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model. In: Do, K.-A., Meller, P. and Vannucci, M., Eds., Bayesian Inference for Gene Expression and Proteomics, Cambridge University Press, Cambridge.
[2] Ishwaran, H. and James, L.F. (2002) Approximate Dirichlet Processes Computing in Finite Normal Mixtures: Smoothing and Prior Information. Journal of Computational and Graphical Statistics, 11, 209-230.
[3] Blei, M.D. and Ng, Y.A. and Jordan, I.M. (2003) Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993-1022.
[4] Bertrand, P. (1996) Estimation of the Stochastic Volatility of a Diffusion Process I. Comparison of Haar Basis Estimator and Kernel Estimators. INRIA Rocquencourt Technical Report, 2739.
[5] Deshhpande, A. and Ghosh, M.K. (2007) Risk Minimizing Option Pricing in a Regime Switching Market (to appear).
[6] Faires, H. (2012) SDEs in Dirichlet Random Environment IJSS 1, 5566.
[7] Ferguson, T.S. (1973) A Bayesian Analysis of Some Nonparametric Problems. Annals of Statistics, 1, 209-230.
[8] Kingman, J.F.C. (1978) Uses of exchangeability. Annals of Probability, 6, 183197.
[9] de Finetti, B. (1931) Funzione caratteristica di un fenomeno aleatorio. Attidella R. Academia Nazionale dei Lincei, Serie 6. Memorie, Classe di Scienze Fisiche, Mathematice e Naturale, 4, 251299.
[10] Hewitt, E. and Savage, L.J. (1955) Symmetric Measures on Cartesian Products. Transactions of the American Mathematical Society, 80, 470501.
[11] Meyer, P.-A. (1966) Probabilités et potentiel. Hermann, Paris.
[12] Gallardo, L. (2008) Mouvement Brownien et calcul d’Itô. Hermann, Paris.
[13] Sethuraman, J. (1994) A Constructive Definition of Dirichlet Priors. Statistica Sinica, 4, 639-650.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.