[1]
|
Chen, G. (2013) Fluorescence Biosensor for H5N1 Antibody Based on Metal-Organic Framework Platform. Journal of Materials Chemistry B, 1, 1812-1817. http://dx.doi.org/10.1039/c3tb00501a
|
|
[2]
|
Po-Yueh, W. and Lu, M.S.C. (2011) CMOS Thermal Sensor Arrays for Enzymatic Glucose Detection. Sensors Journal, IEEE, 11, 3469-3475. http://dx.doi.org/10.1109/JSEN.2011.2161283
|
|
[3]
|
Rayana, R.R.-A., Hugo Javier, S.-P., María Liliana, M.-G., Bernardo, A.F.-U. and Abel, M. (2011) Chemical Biosensors Based on Proteins Involved in Biomineralization Processes. In: Serra, P.A., Ed., Biosensors—Emerging Materials and Applications, InTech, Gwalior. http://www.intechopen.com/books/biosensors-emerging-materials-and-applications/chemical-biose
nsors-based-on-proteins-involved-in-biomineralization-processes
|
|
[4]
|
Lu, Y., Peng, S., Luo, D. and Lal, A. (2011) Low-Concentration Mechanical Biosensor Based on a Photonic Crystal Nanowire Array. Nature Communications, 2, 578.
http://dx.doi.org/10.1038/ncomms1587
|
|
[5]
|
Hua, W., Yan, C., Hassibi, A., Scherer, A. and Hajimiri, A. (2009) A Frequency-Shift CMOS Magnetic Biosensor Array with Single-Bead Sensitivity and No External Magnet. Solid-State Circuits Conference—Digest of Technical Papers, ISSCC 2009. IEEE International, 438-439.
|
|
[6]
|
Zhang, D.-W., Liu, J.-X., Nie, J., Zhou, Y.-L. and Zhang, X.-X. (2013) Micropipet Tip-Based Miniaturized Electroche- mical Device Combined with Ultramicroelectrode and Its Application in Immobilization-Free Enzyme Biosensor. Analytical Chemistry, 85, 2032-2036. http://dx.doi.org/10.1021/ac303223u
|
|
[7]
|
Turner, A.P. (2013) Biosensors: Sense and Sensibility. Chemical Society Reviews, 42, 3184-3196.http://dx.doi.org/10.1039/c3cs35528d
|
|
[8]
|
Childerhose, J.E. and Macdonald, M.E. (2013) Health Consumption as Work: The Home Pregnancy Test as a Domesticated Health Tool. Social Science & Medicine, 86, 1-8. http://dx.doi.org/10.1016/j.socscimed.2013.02.035
|
|
[9]
|
Lazcka, O., Campo, F.J.D. and Muñoz, F.X. (2007) Pathogen Detection: A Perspective of Traditional Methods and Biosensors. Biosensors and Bioelectronics, 22, 1205-1217. http://dx.doi.org/10.1016/j.bios.2006.06.036
|
|
[10]
|
Linares, E.M., Kubota, L.T., Michaelis, J. and Thalhammer, S. (2012) Enhancement of the Detection Limit for Lateral Flow Immunoassays: Evaluation and Comparison of Bioconjugates. Journal of Immunological Methods, 375, 264-270.http://dx.doi.org/10.1016/j.jim.2011.11.003
|
|
[11]
|
Abera, A. and Choi, J.W. (2010) Quantitative Lateral Flow Immunosensor Using Carbon Nanotubes as Label. Analytical Methods, 2, 1819-1822. http://dx.doi.org/10.1039/c0ay00412j
|
|
[12]
|
Fournier, P.E., Drancourt, M., Colson, P., Rolain, J.M., Scola, B.L., Raoult, D., Fournier, P.E., Drancourt, M., Colson, P., Rolain, J.M., Scola, B.L. and Raoult, D. (2013) Modern Clinical Microbiology: New Challenges and Solutions. Nature Reviews Microbiology, 11, 574-585. http://dx.doi.org/10.1038/nrmicro3068
|
|
[13]
|
Justino, C.I.L., Rocha-Santos, T.A.P., Duarte, A.C. and Rocha-Santos, T.A.P. (2013) Advances in Point-of-Care Technologies with Biosensors Based on Carbon Nanotubes. TrAC Trends in Analytical Chemistry, 45, 24-36. http://dx.doi.org/10.1016/j.trac.2012.12.012
|
|
[14]
|
Kim, J., Lee, J.Y., Jin, J.H., Park, C., Lee, C. and Min, N. (2012) A Fully Microfabricated Carbon Nanotube Three- Electrode System on Glass Substrate for Miniaturized Electrochemical Biosensors. Biomedical Microdevices, 14, 613-624. http://dx.doi.org/10.1007/s10544-012-9640-0
|
|
[15]
|
Mendes, R.G., Bachmatiuk, A., Büchner, B., Cuniberti, G. and Rümmeli, M.H. (2013) Carbon Nanostructures as Multi-Functional Drug Delivery Platforms. Journal of Materials Chemistry B, 1, 401-428. http://dx.doi.org/10.1039/c2tb00085g
|
|
[16]
|
Zegeye, E., Jin, Y. and Woldesenbet, E. (2012) A Paper Like Structure Formed by Binding Self-Assembled Glass Microballoons Using Random CNF Networks. Materials Letters, 68, 490-492. http://dx.doi.org/10.1016/j.matlet.2011.11.045
|
|
[17]
|
Gikunoo, E., Abera, A. and Woldesenbet, E. (2014) A Novel Carbon Nanofibers Grown on Glass Microballoons Immunosensor: A Tool for Early Diagnosis of Malaria. Sensors, 14, 14686-14699. http://dx.doi.org/10.3390/s140814686
|
|
[18]
|
Hermanson, G.T. (2008) Bioconjugate Techniques. 2nd Edition, Academic Press, London, 1323.
|
|
[19]
|
Rao, V.K., Suresh, S., Sharma, M.K., Gupta, A. and Vijayaraghavan, R. (2011) Carbon Nanotubes—A Potential Material for Affinity Biosensors. Nanotechnology and Nanomaterials Carbon Nanotubes—Growth and Applications. InTech, Gwalior. http://www.intechopen.com/books/carbon-nanotubes-growth-and-applications
|
|
[20]
|
Nguyen, L.Q., Phan, P.Q., Duong, H.N., Nguyen, C.D. and Nguyen, L.H. (2013) Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles. Sensors, 13, 1754-1762. http://dx.doi.org/10.3390/s130201754
|
|
[21]
|
Marie, R., Beech, J.P., Vörös, J., Tegenfeldt, J.O. and Höök, F. (2006) Use of PLL-g-PEG in Micro-Fluidic Devices for Localizing Selective and Specific Protein Binding. Langmuir, 22, 10103-10108. http://dx.doi.org/10.1021/la060198m
|
|
[22]
|
Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N.W.S., Shim, M., Li, Y., Kim, W., Utz, P.J. and Dai, H. (2003) Noncovalent Functionalization of Carbon Nanotubes for Highly Specific Electronic Biosensors. Proceedings of the National Academy of Sciences of the United States of America, 100, 4984-4989. http://dx.doi.org/10.1073/pnas.0837064100
|
|
[23]
|
Ding, Y., Li, D., Li, B., Zhao, K., Du, W., Zheng, J.Y. and Yang, M.H. (2013) A Water-Dispersible, Ferrocene-Tagged Peptide Nanowire for Amplified Electrochemical Immunosensing. Biosensors and Bioelectronics, 48, 281-286. http://dx.doi.org/10.1016/j.bios.2013.04.030
|
|
[24]
|
Jie, G., Li, L.L., Chen, C., Xuan, J. and Zhu, J.J. (2009) Enhanced Electrochemiluminescence of CdSe Quantum Dots Composited with CNTs and PDDA for Sensitive Immunoassay. Biosensors and Bio-electronics, 24, 3352-3358. http://dx.doi.org/10.1016/j.bios.2009.04.039
|
|
[25]
|
Liu, H., Wu, X.M., Zhang, X., Burda, C. and Zhu, J.J. (2011) Gold Nanoclusters as Signal Amplification Labels for Optical Immunosensors. The Journal of Physical Chemistry C, 116, 2548-2554. http://dx.doi.org/10.1021/jp206256j
|
|
[26]
|
Leng, C., Wu, J., Xu, Q.N., Lai, G.S., Ju, H.X. and Yan, F. (2011) A Highly Sensitive Disposable Immunosensor through Direct Electro-Reduction of Oxygen Catalyzed by Palladium Nanoparticle Decorated Carbon Nanotube Label. Biosensors and Bioelectronics, 27, 71-76. http://dx.doi.org/10.1016/j.bios.2011.06.017
|
|
[27]
|
Yang, Y.C., Dong, S.W., Shen, T., Jian, C.X., Chang, H.J., Li, Y. and Zhou, J.X. (2011) Amplified Immunosensing Based on Ionic Liquid-Doped Chitosan Film as a Matrix and Au Nanoparticle Decorated Graphene Nanosheets as Labels. Electrochimica Acta, 56, 6021-6025. http://dx.doi.org/10.1016/j.electacta.2011.04.096
|
|
[28]
|
Liu, G., Chen, H.D., Peng, H.Z., Song, S.P., Gao, J.M., Lu, J.X., et al. (2011) A Carbon Nanotube-Based High-Sensitivity Electrochemical Immunosensor for Rapid and Portable Detection of Clenbuterol. Biosensors and Bioelectronics, 28, 308-313. http://dx.doi.org/10.1016/j.bios.2011.07.037
|
|
[29]
|
Wang, Z., Gao, H. and Fu, Z. (2013) Introducing Novel Amorphous Carbon Nanoparticles as Energy Acceptors into a Chemiluminescence Resonance Energy Transfer Immunoassay System. Analyst, 138, 6753-6758.
|
|